Loading…
Inverse Scattering of the Zakharov-Shabat System Solves the Weak Noise Theory of the Kardar-Parisi-Zhang Equation
We solve the large deviations of the Kardar-Parisi-Zhang (KPZ) equation in one dimension at short time by introducing an approach which combines field theoretical, probabilistic, and integrable techniques. We expand the program of the weak noise theory, which maps the large deviations onto a nonline...
Saved in:
Published in: | Physical review letters 2021-08, Vol.127 (6), p.064101-064101, Article 064101 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We solve the large deviations of the Kardar-Parisi-Zhang (KPZ) equation in one dimension at short time by introducing an approach which combines field theoretical, probabilistic, and integrable techniques. We expand the program of the weak noise theory, which maps the large deviations onto a nonlinear hydrodynamic problem, and unveil its complete solvability through a connection to the integrability of the Zakharov-Shabat system. Exact solutions, depending on the initial condition of the KPZ equation, are obtained using the inverse scattering method and a Fredholm determinant framework recently developed. These results, explicit in the case of the droplet geometry, open the path to obtain the complete large deviations for general initial conditions. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.127.064101 |