Loading…

Structure-based identification of inhibitors disrupting the CD2–CD58 interactions

The immune system has very intricate mechanisms of fighting against the invading infections which are accomplished by a sequential event of molecular interactions in the body. One of the crucial phenomena in this process is the recognition of T-cells by the antigen-presenting cells (APCs), which is...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computer-aided molecular design 2021-03, Vol.35 (3), p.337-353
Main Authors: Tripathi, Neha, Leherte, Laurence, Vercauteren, Daniel P., Laurent, Adèle D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The immune system has very intricate mechanisms of fighting against the invading infections which are accomplished by a sequential event of molecular interactions in the body. One of the crucial phenomena in this process is the recognition of T-cells by the antigen-presenting cells (APCs), which is initiated by the rapid interaction between both cell surface receptors, i.e. , CD2 located on T-cells and CD58 located on APCs. Under various pathological conditions, which involve undesired immune response, inhibiting the CD2–CD58 interactions becomes a therapeutically relevant opportunity. Herein we present an extensive work to identify novel inhibiting agents of the CD2–CD58 interactions. Classical molecular dynamics (MD) simulations of the CD2–CD58 complex highlighted a series of crucial CD58 residues responsible for the interactions with CD2. Based on such results, a pharmacophore map, complementary to the CD2-binding site of CD58, was created and employed for virtual screening of ~ 300,000 available compounds. On the ~ 6000 compounds filtered from pharmacophore mapping, ADME screening leads to ~ 350 molecules. Molecular docking was then performed on these molecules, and fifteen compounds emerged with significant binding energy (
ISSN:0920-654X
1573-4951
DOI:10.1007/s10822-020-00369-z