Loading…
Power-law and log-normal avalanche size statistics in random growth processes
We study the avalanche statistics observed in a minimal random growth model. The growth is governed by a reproduction rate obeying a probability distribution with finite mean a[over ¯] and variance v_{a}. These two control parameters determine if the avalanche size tends to a stationary distribution...
Saved in:
Published in: | Physical review. E 2021-11, Vol.104 (5), p.L052101-L052101, Article Paper No. L052101, 5 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study the avalanche statistics observed in a minimal random growth model. The growth is governed by a reproduction rate obeying a probability distribution with finite mean a[over ¯] and variance v_{a}. These two control parameters determine if the avalanche size tends to a stationary distribution (finite scale statistics with finite mean and variance, or power-law tailed statistics with exponent ∈(1,3]), or instead to a nonstationary regime with log-normal statistics. Numerical results and their statistical analysis are presented for a uniformly distributed growth rate, which are corroborated and generalized by mathematical results. The latter show that the numerically observed avalanche regimes exist for a wide family of growth rate distributions, and they provide a precise definition of the boundaries between the three regimes. |
---|---|
ISSN: | 2470-0045 2470-0053 |
DOI: | 10.1103/physreve.104.l052101 |