Loading…
Some Remarks on Greenberg–Pierskalla Subdifferentiability of Quasiconvex Functions
We observe that a quasiconvex function which is evenly quasiconvex at a point is not necessarily Greenberg–Pierskalla (briefly, G-P) subdifferentiable at that point, but we prove that a quasiconvex function which is upper semicontinuous on the segments of its effective domain is G-P subdifferentiabl...
Saved in:
Published in: | Vietnam journal of mathematics 2020-06, Vol.48 (2), p.391-406 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We observe that a quasiconvex function which is evenly quasiconvex at a point is not necessarily Greenberg–Pierskalla (briefly, G-P) subdifferentiable at that point, but we prove that a quasiconvex function which is upper semicontinuous on the segments of its effective domain is G-P subdifferentiable on the relative interior of this effective domain. We give an application to surrogate duality in quasiconvex programming. |
---|---|
ISSN: | 2305-221X 2305-2228 |
DOI: | 10.1007/s10013-020-00391-6 |