Loading…
Uniform lower bounds on the dimension of Bernoulli convolutions
In this note we present an algorithm to obtain a uniform lower bound on Hausdorff dimension of the stationary measure of an affine iterated function scheme with similarities, the best known example of which is Bernoulli convolution. The Bernoulli convolution measure μλ is the probability measure cor...
Saved in:
Published in: | Advances in mathematics (New York. 1965) 2022-02, Vol.395, p.108090, Article 108090 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this note we present an algorithm to obtain a uniform lower bound on Hausdorff dimension of the stationary measure of an affine iterated function scheme with similarities, the best known example of which is Bernoulli convolution. The Bernoulli convolution measure μλ is the probability measure corresponding to the law of the random variableξ=∑k=0∞ξkλk, where ξk are i.i.d. random variables assuming values −1 and 1 with equal probability and 12 |
---|---|
ISSN: | 0001-8708 1090-2082 |
DOI: | 10.1016/j.aim.2021.108090 |