Loading…

Stability of products of equivalence relations

An ergodic probability measure preserving (p.m.p.) equivalence relation ${\mathcal{R}}$ is said to be stable if ${\mathcal{R}}\cong {\mathcal{R}}\times {\mathcal{R}}_{0}$ where ${\mathcal{R}}_{0}$ is the unique hyperfinite ergodic type $\text{II}_{1}$ equivalence relation. We prove that a direct pro...

Full description

Saved in:
Bibliographic Details
Published in:Compositio mathematica 2018-09, Vol.154 (9), p.2005-2019, Article 2005
Main Author: Marrakchi, Amine
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An ergodic probability measure preserving (p.m.p.) equivalence relation ${\mathcal{R}}$ is said to be stable if ${\mathcal{R}}\cong {\mathcal{R}}\times {\mathcal{R}}_{0}$ where ${\mathcal{R}}_{0}$ is the unique hyperfinite ergodic type $\text{II}_{1}$ equivalence relation. We prove that a direct product ${\mathcal{R}}\times {\mathcal{S}}$ of two ergodic p.m.p. equivalence relations is stable if and only if one of the two components ${\mathcal{R}}$ or ${\mathcal{S}}$ is stable. This result is deduced from a new local characterization of stable equivalence relations. The similar question on McDuff $\text{II}_{1}$ factors is also discussed and some partial results are given.
ISSN:0010-437X
1570-5846
DOI:10.1112/S0010437X18007388