Loading…
Stability of products of equivalence relations
An ergodic probability measure preserving (p.m.p.) equivalence relation ${\mathcal{R}}$ is said to be stable if ${\mathcal{R}}\cong {\mathcal{R}}\times {\mathcal{R}}_{0}$ where ${\mathcal{R}}_{0}$ is the unique hyperfinite ergodic type $\text{II}_{1}$ equivalence relation. We prove that a direct pro...
Saved in:
Published in: | Compositio mathematica 2018-09, Vol.154 (9), p.2005-2019, Article 2005 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c465t-2280cb49110ffa6364892b636e6c70fefa938e6d2d7c6776f58c99185e4e43e43 |
---|---|
cites | cdi_FETCH-LOGICAL-c465t-2280cb49110ffa6364892b636e6c70fefa938e6d2d7c6776f58c99185e4e43e43 |
container_end_page | 2019 |
container_issue | 9 |
container_start_page | 2005 |
container_title | Compositio mathematica |
container_volume | 154 |
creator | Marrakchi, Amine |
description | An ergodic probability measure preserving (p.m.p.) equivalence relation
${\mathcal{R}}$
is said to be stable if
${\mathcal{R}}\cong {\mathcal{R}}\times {\mathcal{R}}_{0}$
where
${\mathcal{R}}_{0}$
is the unique hyperfinite ergodic type
$\text{II}_{1}$
equivalence relation. We prove that a direct product
${\mathcal{R}}\times {\mathcal{S}}$
of two ergodic p.m.p. equivalence relations is stable if and only if one of the two components
${\mathcal{R}}$
or
${\mathcal{S}}$
is stable. This result is deduced from a new local characterization of stable equivalence relations. The similar question on McDuff
$\text{II}_{1}$
factors is also discussed and some partial results are given. |
doi_str_mv | 10.1112/S0010437X18007388 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03464383v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1112_S0010437X18007388</cupid><sourcerecordid>2363259629</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-2280cb49110ffa6364892b636e6c70fefa938e6d2d7c6776f58c99185e4e43e43</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwFvBk4etkz-bZI-lqBUKHlTwFrLZRFO23TZJi_327tpSRRECE2beb-bxELrEMMQYk5snAAyMilcsAQSV8gj1cC4gyyXjx6jXjbNuforOYpwBAJFE9tDwKenS1z5tB40bLENTrU2K3d-u1n6ja7swdhBsrZNvFvEcnThdR3uxr330cnf7PJ5k08f7h_FomhnG85QRIsGUrMAYnNOcciYLUrbVciPAWacLKi2vSCUMF4K7XJqiwDK3zDLavj663u1917VaBj_XYasa7dVkNFVdDyjjjEq6wa32aqdt3a_WNiY1a9Zh0dpThHJK8oKTolXhncqEJsZg3WEtBtVFqP5E2DLiF2N8-goiBe3rAxn35McPku5JPS-Dr97st6n_730CBs-CIQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2363259629</pqid></control><display><type>article</type><title>Stability of products of equivalence relations</title><source>Cambridge University Press</source><creator>Marrakchi, Amine</creator><creatorcontrib>Marrakchi, Amine</creatorcontrib><description>An ergodic probability measure preserving (p.m.p.) equivalence relation
${\mathcal{R}}$
is said to be stable if
${\mathcal{R}}\cong {\mathcal{R}}\times {\mathcal{R}}_{0}$
where
${\mathcal{R}}_{0}$
is the unique hyperfinite ergodic type
$\text{II}_{1}$
equivalence relation. We prove that a direct product
${\mathcal{R}}\times {\mathcal{S}}$
of two ergodic p.m.p. equivalence relations is stable if and only if one of the two components
${\mathcal{R}}$
or
${\mathcal{S}}$
is stable. This result is deduced from a new local characterization of stable equivalence relations. The similar question on McDuff
$\text{II}_{1}$
factors is also discussed and some partial results are given.</description><identifier>ISSN: 0010-437X</identifier><identifier>EISSN: 1570-5846</identifier><identifier>DOI: 10.1112/S0010437X18007388</identifier><language>eng</language><publisher>London, UK: London Mathematical Society</publisher><subject>Algebra ; Equivalence ; Ergodic processes ; Mathematics ; Theorems</subject><ispartof>Compositio mathematica, 2018-09, Vol.154 (9), p.2005-2019, Article 2005</ispartof><rights>The Author 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-2280cb49110ffa6364892b636e6c70fefa938e6d2d7c6776f58c99185e4e43e43</citedby><cites>FETCH-LOGICAL-c465t-2280cb49110ffa6364892b636e6c70fefa938e6d2d7c6776f58c99185e4e43e43</cites><orcidid>0000-0001-8715-8377</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0010437X18007388/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,72960</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03464383$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Marrakchi, Amine</creatorcontrib><title>Stability of products of equivalence relations</title><title>Compositio mathematica</title><addtitle>Compositio Math</addtitle><description>An ergodic probability measure preserving (p.m.p.) equivalence relation
${\mathcal{R}}$
is said to be stable if
${\mathcal{R}}\cong {\mathcal{R}}\times {\mathcal{R}}_{0}$
where
${\mathcal{R}}_{0}$
is the unique hyperfinite ergodic type
$\text{II}_{1}$
equivalence relation. We prove that a direct product
${\mathcal{R}}\times {\mathcal{S}}$
of two ergodic p.m.p. equivalence relations is stable if and only if one of the two components
${\mathcal{R}}$
or
${\mathcal{S}}$
is stable. This result is deduced from a new local characterization of stable equivalence relations. The similar question on McDuff
$\text{II}_{1}$
factors is also discussed and some partial results are given.</description><subject>Algebra</subject><subject>Equivalence</subject><subject>Ergodic processes</subject><subject>Mathematics</subject><subject>Theorems</subject><issn>0010-437X</issn><issn>1570-5846</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKsfwFvBk4etkz-bZI-lqBUKHlTwFrLZRFO23TZJi_327tpSRRECE2beb-bxELrEMMQYk5snAAyMilcsAQSV8gj1cC4gyyXjx6jXjbNuforOYpwBAJFE9tDwKenS1z5tB40bLENTrU2K3d-u1n6ja7swdhBsrZNvFvEcnThdR3uxr330cnf7PJ5k08f7h_FomhnG85QRIsGUrMAYnNOcciYLUrbVciPAWacLKi2vSCUMF4K7XJqiwDK3zDLavj663u1917VaBj_XYasa7dVkNFVdDyjjjEq6wa32aqdt3a_WNiY1a9Zh0dpThHJK8oKTolXhncqEJsZg3WEtBtVFqP5E2DLiF2N8-goiBe3rAxn35McPku5JPS-Dr97st6n_730CBs-CIQ</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Marrakchi, Amine</creator><general>London Mathematical Society</general><general>Cambridge University Press</general><general>Foundation Compositio Mathematica</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-8715-8377</orcidid></search><sort><creationdate>20180901</creationdate><title>Stability of products of equivalence relations</title><author>Marrakchi, Amine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-2280cb49110ffa6364892b636e6c70fefa938e6d2d7c6776f58c99185e4e43e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algebra</topic><topic>Equivalence</topic><topic>Ergodic processes</topic><topic>Mathematics</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marrakchi, Amine</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Compositio mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marrakchi, Amine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability of products of equivalence relations</atitle><jtitle>Compositio mathematica</jtitle><addtitle>Compositio Math</addtitle><date>2018-09-01</date><risdate>2018</risdate><volume>154</volume><issue>9</issue><spage>2005</spage><epage>2019</epage><pages>2005-2019</pages><artnum>2005</artnum><issn>0010-437X</issn><eissn>1570-5846</eissn><abstract>An ergodic probability measure preserving (p.m.p.) equivalence relation
${\mathcal{R}}$
is said to be stable if
${\mathcal{R}}\cong {\mathcal{R}}\times {\mathcal{R}}_{0}$
where
${\mathcal{R}}_{0}$
is the unique hyperfinite ergodic type
$\text{II}_{1}$
equivalence relation. We prove that a direct product
${\mathcal{R}}\times {\mathcal{S}}$
of two ergodic p.m.p. equivalence relations is stable if and only if one of the two components
${\mathcal{R}}$
or
${\mathcal{S}}$
is stable. This result is deduced from a new local characterization of stable equivalence relations. The similar question on McDuff
$\text{II}_{1}$
factors is also discussed and some partial results are given.</abstract><cop>London, UK</cop><pub>London Mathematical Society</pub><doi>10.1112/S0010437X18007388</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-8715-8377</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-437X |
ispartof | Compositio mathematica, 2018-09, Vol.154 (9), p.2005-2019, Article 2005 |
issn | 0010-437X 1570-5846 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03464383v1 |
source | Cambridge University Press |
subjects | Algebra Equivalence Ergodic processes Mathematics Theorems |
title | Stability of products of equivalence relations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A23%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20of%20products%20of%20equivalence%20relations&rft.jtitle=Compositio%20mathematica&rft.au=Marrakchi,%20Amine&rft.date=2018-09-01&rft.volume=154&rft.issue=9&rft.spage=2005&rft.epage=2019&rft.pages=2005-2019&rft.artnum=2005&rft.issn=0010-437X&rft.eissn=1570-5846&rft_id=info:doi/10.1112/S0010437X18007388&rft_dat=%3Cproquest_hal_p%3E2363259629%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c465t-2280cb49110ffa6364892b636e6c70fefa938e6d2d7c6776f58c99185e4e43e43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2363259629&rft_id=info:pmid/&rft_cupid=10_1112_S0010437X18007388&rfr_iscdi=true |