Loading…

Functional linear regression with functional response

In this paper, we develop new estimation results for functional regressions where both the regressor Z(t) and the response Y(t) are functions of Hilbert spaces, indexed by the time or a spatial location. The model can be thought as a generalization of the multivariate regression where the regression...

Full description

Saved in:
Bibliographic Details
Published in:Journal of econometrics 2017-12, Vol.201 (2), p.269-291
Main Authors: Benatia, David, Carrasco, Marine, Florens, Jean-Pierre
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we develop new estimation results for functional regressions where both the regressor Z(t) and the response Y(t) are functions of Hilbert spaces, indexed by the time or a spatial location. The model can be thought as a generalization of the multivariate regression where the regression coefficient is now an unknown operator Π. We propose to estimate the operator Π by Tikhonov regularization, which amounts to apply a penalty on the L2 norm of Π. We derive the rate of convergence of the mean-square error, the asymptotic distribution of the estimator, and develop tests on Π. As trajectories are often not fully observed, we consider the scenario where the data become more and more frequent (infill asymptotics). We also address the case where Z is endogenous and instrumental variables are used to estimate Π. An application to the electricity consumption completes the paper.
ISSN:0304-4076
1872-6895
DOI:10.1016/j.jeconom.2017.08.008