Loading…

Positive linear maps on Hilbert space operators and noncommutative L p spaces

We extend some inequalities for normal matrices and positive linear maps related to the Russo-Dye theorem. The results cover the case of some positive linear maps Φ on a von Neumann algebra M such that Φ(X) is unbounded for all nonzero X ∈ M.

Saved in:
Bibliographic Details
Published in:Acta scientiarum mathematicarum (Szeged) 2021, Vol.87 (1-2), p.195-206
Main Authors: Bourin, Jean-Christophe, Shao, Jingjing
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We extend some inequalities for normal matrices and positive linear maps related to the Russo-Dye theorem. The results cover the case of some positive linear maps Φ on a von Neumann algebra M such that Φ(X) is unbounded for all nonzero X ∈ M.
ISSN:0001-6969
2064-8316
DOI:10.14232/actasm-020-671-1