Loading…
Experimental and modeling of tetracycline degradation in water in a flow-through enzymatic monolithic reactor
In this work, the laccase from Trametes versicolor was immobilized in highly porous silica monoliths (0.6-cm diameter, 0.5-cm length). These monoliths feature a unique homogeneous network of interconnected macropores (20 μm) with mesopores (20 nm) in the skeleton and a high specific surface area (33...
Saved in:
Published in: | Environmental science and pollution research international 2022-10, Vol.29 (50), p.75896-75906 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this work, the laccase from
Trametes versicolor
was immobilized in highly porous silica monoliths (0.6-cm diameter, 0.5-cm length). These monoliths feature a unique homogeneous network of interconnected macropores (20 μm) with mesopores (20 nm) in the skeleton and a high specific surface area (330 m
2
/g). The enzymatic monoliths were applied to degrade tetracycline (TC) in model aqueous solutions (20 ppm). For this purpose, a tubular flow-through reactor (FTR) configuration with recycling was built. The TC degradation was improved with oxygen saturation, presence of degradation products, and recirculation rate. The TC depletion reaches 50% in the FTR and 90% in a stirred tank reactor (CSTR) using crushed monoliths. These results indicate the importance of maintaining a high co-substrate concentration near active sites. A model coupling mass transfers with a Michaelis-Menten kinetics was applied to simulate the TC degradation in real wastewaters at actual TC concentration (2.8 10
−4
ppm). Simulation results show that industrial scale FTR reactor should be suitable to degrade 90% of TC in 5 h at a flow rate of 1 mL/min in a single passage flow configuration. Nevertheless, the process could certainly be further optimized in terms of laccase activity, oxygen supply near active sites, and contact time. |
---|---|
ISSN: | 0944-1344 1614-7499 |
DOI: | 10.1007/s11356-022-21204-y |