Loading…

Using dual techniques to derive componentwise and mixed condition numbers for a linear function of a linear least squares solution

We prove duality results for adjoint operators and product norms in the framework of Euclidean spaces. We show how these results can be used to derive condition numbers especially when perturbations on data are measured componentwise relatively to the original data. We apply this technique to obtain...

Full description

Saved in:
Bibliographic Details
Published in:BIT (Lisse : trykt utg.) 2009-03, Vol.49 (1), p.3-19
Main Authors: Baboulin, Marc, Gratton, Serge
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We prove duality results for adjoint operators and product norms in the framework of Euclidean spaces. We show how these results can be used to derive condition numbers especially when perturbations on data are measured componentwise relatively to the original data. We apply this technique to obtain formulas for componentwise and mixed condition numbers for a linear function of a linear least squares solution. These expressions are closed when perturbations of the solution are measured using a componentwise norm or the infinity norm and we get an upper bound for the Euclidean norm.
ISSN:0006-3835
1572-9125
DOI:10.1007/s10543-009-0213-4