Loading…

Distribution-free robust linear regression

We study random design linear regression with no assumptions on the distribution of the covariates and with a heavy-tailed response variable. In this distribution-free regression setting, we show that boundedness of the conditional second moment of the response given the covariates is a necessary an...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical statistics and learning (Online) 2021, Vol.4 (3), p.253-292
Main Authors: Mourtada, Jaouad, Vaškevičius, Tomas, Zhivotovskiy, Nikita
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We study random design linear regression with no assumptions on the distribution of the covariates and with a heavy-tailed response variable. In this distribution-free regression setting, we show that boundedness of the conditional second moment of the response given the covariates is a necessary and sufficient condition for achieving non-trivial guarantees. As a starting point, we prove an optimal version of the classical in-expectation bound for the truncated least squares estimator due to Györfi, Kohler, Krzyżak, and Walk. However, we show that this procedure fails with constant probability for some distributions despite its optimal in-expectation performance. Then, combining the ideas of truncated least squares, median-ofmeans procedures, and aggregation theory, we construct a non-linear estimator achieving excess risk of order d/n with the optimal sub-exponential tail. While existing approaches to linear regression for heavy-tailed distributions focus on proper estimators that return linear functions, we highlight that the improperness of our procedure is necessary for attaining non-trivial guarantees in the distribution-free setting.
ISSN:2520-2316
2520-2324
DOI:10.4171/msl/27