Loading…
Rapidly convergent two-dimensional quasi-periodic Green function throughout the spectrum—including Wood anomalies
We introduce a new methodology, based on new quasi-periodic Green functions which converge rapidly even at and around Wood-anomaly configurations, for the numerical solution of problems of scattering by periodic rough surfaces in two-dimensional space. As is well known the classical quasi-periodic G...
Saved in:
Published in: | Journal of computational physics 2014-04, Vol.262, p.262-290 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We introduce a new methodology, based on new quasi-periodic Green functions which converge rapidly even at and around Wood-anomaly configurations, for the numerical solution of problems of scattering by periodic rough surfaces in two-dimensional space. As is well known the classical quasi-periodic Green function ceases to exist at Wood anomalies. The approach introduced in this text produces fast Green function convergence throughout the spectrum on the basis of a certain “finite-differencing” approach and smooth windowing of the classical Green function lattice sum. The resulting Green-function convergence is super-algebraically fast away from Wood anomalies, and it reduces to an arbitrarily-high (user-prescribed) algebraic order of convergence at Wood anomalies. |
---|---|
ISSN: | 0021-9991 1090-2716 |
DOI: | 10.1016/j.jcp.2013.12.047 |