Loading…
Detecting vegetation leaf water content using reflectance in the optical domain
This paper outlines the first part of a series of research studies to investigate the potential and approaches for using optical remote sensing to assess vegetation water content. It first analyzes why most methods used as approximations of vegetation water content (such as vegetation stress indices...
Saved in:
Published in: | Remote sensing of environment 2001-07, Vol.77 (1), p.22-33 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper outlines the first part of a series of research studies to investigate the potential and approaches for using optical remote sensing to assess vegetation water content. It first analyzes why most methods used as approximations of vegetation water content (such as vegetation stress indices, estimation of degree of curing and chlorophyll content) are not suitable for retrieving water content at leaf level. It then documents the physical basis supporting the use of remote sensing to directly detect vegetation water content in terms of Equivalent Water Thickness (EWT) at leaf level. Using laboratory measurements, the radiative transfer model PROSPECT and a sensitivity analysis, it shows that shortwave infrared (SWIR) is sensitive to EWT but cannot be used alone to retrieve EWT because two other leaf parameters (internal structure and dry matter) also influence leaf reflectance in the SWIR. A combination of SWIR and NIR (only influenced by these two parameters) is necessary to retrieve EWT at leaf level. These results set the basis towards establishing operational techniques for the retrieval of EWT at top-of-canopy and top-of-atmospheric levels. |
---|---|
ISSN: | 0034-4257 1879-0704 |
DOI: | 10.1016/S0034-4257(01)00191-2 |