Loading…

Data-driven prognostics based on time-frequency analysis and symbolic recurrent neural network for fuel cells under dynamic load

•HHT-based method eliminates dynamic load noise and extracts degradation features.•Symbol-based GRU achieves reliable and efficient long-term prognostics.•Proposed data-driven method provides competitive prognostics horizon and accuracy.•Multiple failure thresholds can assess prognostics consistency...

Full description

Saved in:
Bibliographic Details
Published in:Reliability engineering & system safety 2023-05, Vol.233 (May), p.109123, Article 109123
Main Authors: Wang, Chu, Dou, Manfeng, Li, Zhongliang, Outbib, Rachid, Zhao, Dongdong, Zuo, Jian, Wang, Yuanlin, Liang, Bin, Wang, Peng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:•HHT-based method eliminates dynamic load noise and extracts degradation features.•Symbol-based GRU achieves reliable and efficient long-term prognostics.•Proposed data-driven method provides competitive prognostics horizon and accuracy.•Multiple failure thresholds can assess prognostics consistency and generalizability. Data-centric prognostics is beneficial to improve the reliability and safety of proton exchange membrane fuel cell (PEMFC). For the prognostics of PEMFC operating under dynamic load, the challenges come from extracting degradation features, improving prediction accuracy, expanding the prognostics horizon, and reducing computational cost. To address these issues, this work proposes a data-driven PEMFC prognostics approach, in which Hilbert-Huang transform is used to extract health indicator in dynamic operating conditions and symbolic-based gated recurrent unit model is used to enhance the accuracy of life prediction. Comparing with other state-of-the-art methods, the proposed data-driven prognostics approach provides a competitive prognostics horizon with lower computational cost. The prognostics performance shows consistency and generalizability under different failure threshold settings.
ISSN:0951-8320
1879-0836
DOI:10.1016/j.ress.2023.109123