Loading…

Data-driven prognostics based on time-frequency analysis and symbolic recurrent neural network for fuel cells under dynamic load

•HHT-based method eliminates dynamic load noise and extracts degradation features.•Symbol-based GRU achieves reliable and efficient long-term prognostics.•Proposed data-driven method provides competitive prognostics horizon and accuracy.•Multiple failure thresholds can assess prognostics consistency...

Full description

Saved in:
Bibliographic Details
Published in:Reliability engineering & system safety 2023-05, Vol.233 (May), p.109123, Article 109123
Main Authors: Wang, Chu, Dou, Manfeng, Li, Zhongliang, Outbib, Rachid, Zhao, Dongdong, Zuo, Jian, Wang, Yuanlin, Liang, Bin, Wang, Peng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c378t-dfc07f9c767acf7b714c1981aeeabd262cad7f476b067c1936fb50a5b7d9f3dc3
cites cdi_FETCH-LOGICAL-c378t-dfc07f9c767acf7b714c1981aeeabd262cad7f476b067c1936fb50a5b7d9f3dc3
container_end_page
container_issue May
container_start_page 109123
container_title Reliability engineering & system safety
container_volume 233
creator Wang, Chu
Dou, Manfeng
Li, Zhongliang
Outbib, Rachid
Zhao, Dongdong
Zuo, Jian
Wang, Yuanlin
Liang, Bin
Wang, Peng
description •HHT-based method eliminates dynamic load noise and extracts degradation features.•Symbol-based GRU achieves reliable and efficient long-term prognostics.•Proposed data-driven method provides competitive prognostics horizon and accuracy.•Multiple failure thresholds can assess prognostics consistency and generalizability. Data-centric prognostics is beneficial to improve the reliability and safety of proton exchange membrane fuel cell (PEMFC). For the prognostics of PEMFC operating under dynamic load, the challenges come from extracting degradation features, improving prediction accuracy, expanding the prognostics horizon, and reducing computational cost. To address these issues, this work proposes a data-driven PEMFC prognostics approach, in which Hilbert-Huang transform is used to extract health indicator in dynamic operating conditions and symbolic-based gated recurrent unit model is used to enhance the accuracy of life prediction. Comparing with other state-of-the-art methods, the proposed data-driven prognostics approach provides a competitive prognostics horizon with lower computational cost. The prognostics performance shows consistency and generalizability under different failure threshold settings.
doi_str_mv 10.1016/j.ress.2023.109123
format article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03956056v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0951832023000388</els_id><sourcerecordid>oai_HAL_hal_03956056v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-dfc07f9c767acf7b714c1981aeeabd262cad7f476b067c1936fb50a5b7d9f3dc3</originalsourceid><addsrcrecordid>eNp9kLFu2zAQhomgBeImfYFOXDPIIUWLlIAsQdIkBQx0aWbiRB5TujSZkJILbXn00nDRsdMd7v7vgPsI-cLZmjMur3frjKWsW9aKOhh4K87IivdqaFgv5AeyYkPHm1607Jx8KmXHGNsMnVqR93uYoLHZHzDS15xeYiqTN4WOUNDSFOnk99i4jG8zRrNQiBCW4kttLC3LfkzBG5rRzDljnGjEOUOoZfqd8i_qUqZuxkANhlDoHC1mapcI-0qFBPaSfHQQCn7-Wy_I88PXH3dPzfb747e7221jhOqnxjrDlBuMkgqMU6PiG8OHngMijLaVrQGr3EbJkUlVN0K6sWPQjcoOTlgjLsjV6e5PCPo1-z3kRSfw-ul2q48zJoZOsk4eeM22p6zJqZSM7h_AmT761jt99K2PvvXJd4VuThDWLw4esy7GV2VofbUzaZv8__A_HFWM5g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Data-driven prognostics based on time-frequency analysis and symbolic recurrent neural network for fuel cells under dynamic load</title><source>ScienceDirect Freedom Collection</source><creator>Wang, Chu ; Dou, Manfeng ; Li, Zhongliang ; Outbib, Rachid ; Zhao, Dongdong ; Zuo, Jian ; Wang, Yuanlin ; Liang, Bin ; Wang, Peng</creator><creatorcontrib>Wang, Chu ; Dou, Manfeng ; Li, Zhongliang ; Outbib, Rachid ; Zhao, Dongdong ; Zuo, Jian ; Wang, Yuanlin ; Liang, Bin ; Wang, Peng</creatorcontrib><description>•HHT-based method eliminates dynamic load noise and extracts degradation features.•Symbol-based GRU achieves reliable and efficient long-term prognostics.•Proposed data-driven method provides competitive prognostics horizon and accuracy.•Multiple failure thresholds can assess prognostics consistency and generalizability. Data-centric prognostics is beneficial to improve the reliability and safety of proton exchange membrane fuel cell (PEMFC). For the prognostics of PEMFC operating under dynamic load, the challenges come from extracting degradation features, improving prediction accuracy, expanding the prognostics horizon, and reducing computational cost. To address these issues, this work proposes a data-driven PEMFC prognostics approach, in which Hilbert-Huang transform is used to extract health indicator in dynamic operating conditions and symbolic-based gated recurrent unit model is used to enhance the accuracy of life prediction. Comparing with other state-of-the-art methods, the proposed data-driven prognostics approach provides a competitive prognostics horizon with lower computational cost. The prognostics performance shows consistency and generalizability under different failure threshold settings.</description><identifier>ISSN: 0951-8320</identifier><identifier>EISSN: 1879-0836</identifier><identifier>DOI: 10.1016/j.ress.2023.109123</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Automatic ; Dynamic load ; Electric power ; Empirical mode decomposition ; Engineering Sciences ; Proton exchange membrane fuel cell ; Remaining useful life ; Symbolic representation gated recurrent unit ; Time-frequency-energy spectrum</subject><ispartof>Reliability engineering &amp; system safety, 2023-05, Vol.233 (May), p.109123, Article 109123</ispartof><rights>2023 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-dfc07f9c767acf7b714c1981aeeabd262cad7f476b067c1936fb50a5b7d9f3dc3</citedby><cites>FETCH-LOGICAL-c378t-dfc07f9c767acf7b714c1981aeeabd262cad7f476b067c1936fb50a5b7d9f3dc3</cites><orcidid>0000-0002-7515-3875 ; 0000-0003-0985-2763</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03956056$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Chu</creatorcontrib><creatorcontrib>Dou, Manfeng</creatorcontrib><creatorcontrib>Li, Zhongliang</creatorcontrib><creatorcontrib>Outbib, Rachid</creatorcontrib><creatorcontrib>Zhao, Dongdong</creatorcontrib><creatorcontrib>Zuo, Jian</creatorcontrib><creatorcontrib>Wang, Yuanlin</creatorcontrib><creatorcontrib>Liang, Bin</creatorcontrib><creatorcontrib>Wang, Peng</creatorcontrib><title>Data-driven prognostics based on time-frequency analysis and symbolic recurrent neural network for fuel cells under dynamic load</title><title>Reliability engineering &amp; system safety</title><description>•HHT-based method eliminates dynamic load noise and extracts degradation features.•Symbol-based GRU achieves reliable and efficient long-term prognostics.•Proposed data-driven method provides competitive prognostics horizon and accuracy.•Multiple failure thresholds can assess prognostics consistency and generalizability. Data-centric prognostics is beneficial to improve the reliability and safety of proton exchange membrane fuel cell (PEMFC). For the prognostics of PEMFC operating under dynamic load, the challenges come from extracting degradation features, improving prediction accuracy, expanding the prognostics horizon, and reducing computational cost. To address these issues, this work proposes a data-driven PEMFC prognostics approach, in which Hilbert-Huang transform is used to extract health indicator in dynamic operating conditions and symbolic-based gated recurrent unit model is used to enhance the accuracy of life prediction. Comparing with other state-of-the-art methods, the proposed data-driven prognostics approach provides a competitive prognostics horizon with lower computational cost. The prognostics performance shows consistency and generalizability under different failure threshold settings.</description><subject>Automatic</subject><subject>Dynamic load</subject><subject>Electric power</subject><subject>Empirical mode decomposition</subject><subject>Engineering Sciences</subject><subject>Proton exchange membrane fuel cell</subject><subject>Remaining useful life</subject><subject>Symbolic representation gated recurrent unit</subject><subject>Time-frequency-energy spectrum</subject><issn>0951-8320</issn><issn>1879-0836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kLFu2zAQhomgBeImfYFOXDPIIUWLlIAsQdIkBQx0aWbiRB5TujSZkJILbXn00nDRsdMd7v7vgPsI-cLZmjMur3frjKWsW9aKOhh4K87IivdqaFgv5AeyYkPHm1607Jx8KmXHGNsMnVqR93uYoLHZHzDS15xeYiqTN4WOUNDSFOnk99i4jG8zRrNQiBCW4kttLC3LfkzBG5rRzDljnGjEOUOoZfqd8i_qUqZuxkANhlDoHC1mapcI-0qFBPaSfHQQCn7-Wy_I88PXH3dPzfb747e7221jhOqnxjrDlBuMkgqMU6PiG8OHngMijLaVrQGr3EbJkUlVN0K6sWPQjcoOTlgjLsjV6e5PCPo1-z3kRSfw-ul2q48zJoZOsk4eeM22p6zJqZSM7h_AmT761jt99K2PvvXJd4VuThDWLw4esy7GV2VofbUzaZv8__A_HFWM5g</recordid><startdate>202305</startdate><enddate>202305</enddate><creator>Wang, Chu</creator><creator>Dou, Manfeng</creator><creator>Li, Zhongliang</creator><creator>Outbib, Rachid</creator><creator>Zhao, Dongdong</creator><creator>Zuo, Jian</creator><creator>Wang, Yuanlin</creator><creator>Liang, Bin</creator><creator>Wang, Peng</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-7515-3875</orcidid><orcidid>https://orcid.org/0000-0003-0985-2763</orcidid></search><sort><creationdate>202305</creationdate><title>Data-driven prognostics based on time-frequency analysis and symbolic recurrent neural network for fuel cells under dynamic load</title><author>Wang, Chu ; Dou, Manfeng ; Li, Zhongliang ; Outbib, Rachid ; Zhao, Dongdong ; Zuo, Jian ; Wang, Yuanlin ; Liang, Bin ; Wang, Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-dfc07f9c767acf7b714c1981aeeabd262cad7f476b067c1936fb50a5b7d9f3dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Automatic</topic><topic>Dynamic load</topic><topic>Electric power</topic><topic>Empirical mode decomposition</topic><topic>Engineering Sciences</topic><topic>Proton exchange membrane fuel cell</topic><topic>Remaining useful life</topic><topic>Symbolic representation gated recurrent unit</topic><topic>Time-frequency-energy spectrum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Chu</creatorcontrib><creatorcontrib>Dou, Manfeng</creatorcontrib><creatorcontrib>Li, Zhongliang</creatorcontrib><creatorcontrib>Outbib, Rachid</creatorcontrib><creatorcontrib>Zhao, Dongdong</creatorcontrib><creatorcontrib>Zuo, Jian</creatorcontrib><creatorcontrib>Wang, Yuanlin</creatorcontrib><creatorcontrib>Liang, Bin</creatorcontrib><creatorcontrib>Wang, Peng</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Reliability engineering &amp; system safety</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Chu</au><au>Dou, Manfeng</au><au>Li, Zhongliang</au><au>Outbib, Rachid</au><au>Zhao, Dongdong</au><au>Zuo, Jian</au><au>Wang, Yuanlin</au><au>Liang, Bin</au><au>Wang, Peng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-driven prognostics based on time-frequency analysis and symbolic recurrent neural network for fuel cells under dynamic load</atitle><jtitle>Reliability engineering &amp; system safety</jtitle><date>2023-05</date><risdate>2023</risdate><volume>233</volume><issue>May</issue><spage>109123</spage><pages>109123-</pages><artnum>109123</artnum><issn>0951-8320</issn><eissn>1879-0836</eissn><abstract>•HHT-based method eliminates dynamic load noise and extracts degradation features.•Symbol-based GRU achieves reliable and efficient long-term prognostics.•Proposed data-driven method provides competitive prognostics horizon and accuracy.•Multiple failure thresholds can assess prognostics consistency and generalizability. Data-centric prognostics is beneficial to improve the reliability and safety of proton exchange membrane fuel cell (PEMFC). For the prognostics of PEMFC operating under dynamic load, the challenges come from extracting degradation features, improving prediction accuracy, expanding the prognostics horizon, and reducing computational cost. To address these issues, this work proposes a data-driven PEMFC prognostics approach, in which Hilbert-Huang transform is used to extract health indicator in dynamic operating conditions and symbolic-based gated recurrent unit model is used to enhance the accuracy of life prediction. Comparing with other state-of-the-art methods, the proposed data-driven prognostics approach provides a competitive prognostics horizon with lower computational cost. The prognostics performance shows consistency and generalizability under different failure threshold settings.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ress.2023.109123</doi><orcidid>https://orcid.org/0000-0002-7515-3875</orcidid><orcidid>https://orcid.org/0000-0003-0985-2763</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0951-8320
ispartof Reliability engineering & system safety, 2023-05, Vol.233 (May), p.109123, Article 109123
issn 0951-8320
1879-0836
language eng
recordid cdi_hal_primary_oai_HAL_hal_03956056v1
source ScienceDirect Freedom Collection
subjects Automatic
Dynamic load
Electric power
Empirical mode decomposition
Engineering Sciences
Proton exchange membrane fuel cell
Remaining useful life
Symbolic representation gated recurrent unit
Time-frequency-energy spectrum
title Data-driven prognostics based on time-frequency analysis and symbolic recurrent neural network for fuel cells under dynamic load
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T00%3A46%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-driven%20prognostics%20based%20on%20time-frequency%20analysis%20and%20symbolic%20recurrent%20neural%20network%20for%20fuel%20cells%20under%20dynamic%20load&rft.jtitle=Reliability%20engineering%20&%20system%20safety&rft.au=Wang,%20Chu&rft.date=2023-05&rft.volume=233&rft.issue=May&rft.spage=109123&rft.pages=109123-&rft.artnum=109123&rft.issn=0951-8320&rft.eissn=1879-0836&rft_id=info:doi/10.1016/j.ress.2023.109123&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03956056v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c378t-dfc07f9c767acf7b714c1981aeeabd262cad7f476b067c1936fb50a5b7d9f3dc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true