Loading…
Fluid Drag Reduction by Magnetic Confinement
The frictional forces of a viscous liquid flow are a major energy loss issue and severely limit microfluidics practical use. Reducing this drag by more than a few tens of percent remain elusive. Here, we show how cylindrical liquid–in–liquid flow leads to drag reduction of 60–99% for sub-mm and mm-s...
Saved in:
Published in: | Langmuir 2022-01, Vol.38 (2), p.719-726 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The frictional forces of a viscous liquid flow are a major energy loss issue and severely limit microfluidics practical use. Reducing this drag by more than a few tens of percent remain elusive. Here, we show how cylindrical liquid–in–liquid flow leads to drag reduction of 60–99% for sub-mm and mm-sized channels, regardless of whether the viscosity of the transported liquid is larger or smaller than that of the confining one. In contrast to lubrication or sheath flow, we do not require a continuous flow of the confining lubricant, here made of a ferrofluid held in place by magnetic forces. In a laminar flow model with appropriate boundary conditions, we introduce a modified Reynolds number with a scaling that depends on geometrical factors and viscosity ratio of the two liquids. It explains our whole range of data and reveals the key design parameters for optimizing the drag reduction values. Our approach promises a new route for microfluidics designs with pressure gradient reduced by orders of magnitude. |
---|---|
ISSN: | 0743-7463 1520-5827 |
DOI: | 10.1021/acs.langmuir.1c02617 |