Loading…

Destabilizing resonances of precessing inertia-gravity waves

Instabilities in stratified precessing fluid are investigated. We extend the study by Mahalov [Phys. Fluids A 5, 891 (1993)0899-821310.1063/1.858635] in the stably stratified Boussinesq framework, with an external Coriolis force (with rate Ω_{p}) altering the base flow through the distortion of the...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. E 2022-03, Vol.105 (3-2), p.035107-035107, Article 035107
Main Authors: Benkacem, N, Salhi, A, Khlifi, A, Nasraoui, S, Cambon, C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Instabilities in stratified precessing fluid are investigated. We extend the study by Mahalov [Phys. Fluids A 5, 891 (1993)0899-821310.1063/1.858635] in the stably stratified Boussinesq framework, with an external Coriolis force (with rate Ω_{p}) altering the base flow through the distortion of the circular streamlines of the unperturbed axially stratified rotating columns (with constant vorticity 2Ω.) It is shown that the inviscid part of the modified velocity flow (0,Ωr,-2ɛΩrsinφ) and buoyancy with gradient N^{2}(-2ɛcosφ,2ɛsinφ,1) are an exact solution of Boussinesq-Euler equations. Here (r,φ,z) is a cylindrical coordinate system, with ɛ=Ω_{p}/Ω being the Poincaré number and N the Brunt-Väisälä frequency. The base flow is transformed into a Cartesian coordinate system, and the stability of a superimposed perturbation is studied in terms of Fourier (or Kelvin) modes. The resulting Floquet system for the Fourier modes has three parameters: ɛ, N=N/Ω, and μ, which is the angle between the wave vector k and the solid-body rotation axis in the limit ɛ=0. In this limit, there are inertia-gravity waves propagating with frequency ±ω and the resonant cases are those for which 2ω=nΩ, n being an integer. We perform an asymptotic analysis to leading order in ɛ and characterize the destabilizing resonant case of order n=1 (i.e., the subharmonic instability) which exists and for 0≤N
ISSN:2470-0045
2470-0053
DOI:10.1103/PhysRevE.105.035107