Loading…

Spatiotemporal regulation of hnRNP M and 2H9 gene expression during mouse embryonic development

Using the HeLa cell model along with an in vitro splicing system, we have previously shown that hnRNP M and 2H9 are involved in the pre-mRNA splicing process and most interestingly also in heat shock-induced transient splicing arrest by transiently leaving the hnRNP complexes. Due to this unique reg...

Full description

Saved in:
Bibliographic Details
Published in:Biochimica et biophysica acta 2000-07, Vol.1492 (2), p.414-424
Main Authors: Mahé, Dominique, Fischer, Nadine, Décimo, Didier, Fuchs, Jean-Paul
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Using the HeLa cell model along with an in vitro splicing system, we have previously shown that hnRNP M and 2H9 are involved in the pre-mRNA splicing process and most interestingly also in heat shock-induced transient splicing arrest by transiently leaving the hnRNP complexes. Due to this unique regulatory function in a mechanism that turns splicing on and off, these two hnRNPs appear as important proteins for controlling gene expression. Here we investigated by in situ hybridization and immunohistochemical staining techniques the expression level of specific mRNA and protein during mouse embryonic development. HnRNP M and 2H9 are found to be expressed at all examined stages (6.5–18.5 days post-coïtum), in a differential manner, and at various levels depending on tissues, cell types and also embryonic stages; fairly high levels of both hnRNPs are always observed in the central nervous system. Furthermore, levels of colocalizing protein and transcript are not always present in the same proportion, thus suggesting a post-transcriptional regulation of hnRNP M and 2H9 gene expression. The complex spatiotemporal variations we observed might well anticipate a role for these two hnRNPs also in modulating splicing, thereby influencing gene expression and further many physiological processes.
ISSN:0167-4781
0006-3002
1879-2634
DOI:10.1016/S0167-4781(00)00144-5