Loading…
A search for rare $B \rightarrow D \mu^+ \mu^-$ decays
A search for rare $B \rightarrow D \mu^+ \mu^-$ decays is performed using proton-proton collision data collected by the LHCb experiment, corresponding to an integrated luminosity of 9 fb$^{-1}$. No significant signals are observed in the non-resonant $\mu^+\mu^-$ modes, and upper limits of $\mathcal...
Saved in:
Published in: | The journal of high energy physics 2024, Vol.2 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A search for rare $B \rightarrow D \mu^+ \mu^-$ decays is performed using proton-proton collision data collected by the LHCb experiment, corresponding to an integrated luminosity of 9 fb$^{-1}$. No significant signals are observed in the non-resonant $\mu^+\mu^-$ modes, and upper limits of $\mathcal{B}(B^0 \rightarrow \overline{D}^0 \mu^+ \mu^-) < 5.1 \times 10^{-8}$, $\mathcal{B}(B^+ \rightarrow D_s^+ \mu^+ \mu^-) < 3.2 \times 10^{-8}$, $\mathcal{B}(B_s^0 \rightarrow \overline{D}^0 \mu^+ \mu^-) < 1.6 \times 10^{-7}$ and $f_c/f_u \cdot \mathcal{B}(B_c^+ \rightarrow D_s^+ \mu^+ \mu^-) < 9.6 \times 10^{-8}$ are set at the 95% confidence level, where $f_c$ and $f_u$ are the fragmentation fractions of a $B$ meson with a $c$ and $u$ quark respectively in proton-proton collisions. Each result is either the first such measurement or an improvement by three orders of magnitude on an existing limit. Separate upper limits are calculated when the muon pair originates from a $J/\psi \rightarrow \mu^+ \mu^-$ decay. The branching fraction of $B_c^+ \rightarrow D_s^+ J/\psi$ multiplied by the fragmentation-fraction ratio is measured to be $f_c/f_u \cdot \mathcal{B}(B_c^+ \rightarrow D_s^+ J/\psi ) = (1.63 \pm 0.15 \pm 0.13) \times 10^{-5}$, where the first uncertainty is statistical and the second systematic. |
---|---|
ISSN: | 1126-6708 1029-8479 |
DOI: | 10.1007/JHEP02(2024)032 |