Loading…

Backbone and side chain NMR assignments for the ribosome maturation factor P (RimP) from Staphylococcus aureus

The ribosomal maturation factor (RimP) is a 17.7 kDa protein and is the assembly factor of the 30S subunit. RimP is essential for efficient processing of 16S rRNA and maturation (assembly) of the 30S ribosome. It was suggested that RimP takes part in stabilization of the central pseudoknot at the ea...

Full description

Saved in:
Bibliographic Details
Published in:Biomolecular NMR assignments 2022-10, Vol.16 (2), p.373-377
Main Authors: Garaeva, Natalia S., Bikmullin, Aydar G., Fatkhullin, Bulat F., Validov, Shamil Z., Keiffer, Bruno, Yusupov, Marat M., Usachev, Konstantin S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The ribosomal maturation factor (RimP) is a 17.7 kDa protein and is the assembly factor of the 30S subunit. RimP is essential for efficient processing of 16S rRNA and maturation (assembly) of the 30S ribosome. It was suggested that RimP takes part in stabilization of the central pseudoknot at the early stages of the 30S subunit maturation, and this process may occur before the head domain assembly and later stages of the 30S assembly, but the mechanism of this interaction is still not fully understood. Here we report the assignment of the 1H, 13C and 15N chemical shift in the backbone and side chains of RimP from Staphylococcus aureus. Analysis of chemical shifts of the main chain using TALOS + suggests that the RimP contains eight β-strands and three α-helices with the topology α1-β1-β2-α2- β3- α3- β4- β5- β6- β7- β8. Structural studies of RimP and its complex with the ribosome by integrated structural biology approaches (NMR spectroscopy, X-ray diffraction analysis and cryoelectron microscopy) will allow further screening of highly selective inhibitors of the translation of S. aureus.
ISSN:1874-2718
1874-270X
DOI:10.1007/s12104-022-10106-2