Loading…

Mathematical runtime analysis for the non-dominated sorting genetic algorithm II (NSGA-II)

The non-dominated sorting genetic algorithm II (NSGA-II) is the most intensively used multi-objective evolutionary algorithm (MOEA) in real-world applications. However, in contrast to several simple MOEAs analyzed also via mathematical means, no such study exists for the NSGA-II so far. In this work...

Full description

Saved in:
Bibliographic Details
Published in:Artificial intelligence 2023-12, Vol.325, p.104016, Article 104016
Main Authors: Zheng, Weijie, Doerr, Benjamin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The non-dominated sorting genetic algorithm II (NSGA-II) is the most intensively used multi-objective evolutionary algorithm (MOEA) in real-world applications. However, in contrast to several simple MOEAs analyzed also via mathematical means, no such study exists for the NSGA-II so far. In this work, we show that mathematical runtime analyses are feasible also for the NSGA-II. As particular results, we prove that with a population size four times larger than the size of the Pareto front, the NSGA-II with two classic mutation operators and four different ways to select the parents satisfies the same asymptotic runtime guarantees as the SEMO and GSEMO algorithms on the basic OneMinMax and LeadingOnesTrailingZeroes benchmarks. However, if the population size is only equal to the size of the Pareto front, then the NSGA-II cannot efficiently compute the full Pareto front: for an exponential number of iterations, the population will always miss a constant fraction of the Pareto front. Our experiments confirm the above findings.
ISSN:0004-3702
1872-7921
DOI:10.1016/j.artint.2023.104016