Loading…
Lelong–Poincaré formula in symplectic and almost complex geometry
In this paper, we present two applications of the theory of singular connections developed by Harvey and Lawson (1993). The first one is a version of the Lelong–Poincaré formula with estimates for sections of vector bundles over an almost complex manifold. The second one is a convergence theorem for...
Saved in:
Published in: | Expositiones mathematicae 2020-09, Vol.38 (3), p.337-364 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we present two applications of the theory of singular connections developed by Harvey and Lawson (1993). The first one is a version of the Lelong–Poincaré formula with estimates for sections of vector bundles over an almost complex manifold. The second one is a convergence theorem for divisors associated to a general family of symplectic submanifolds constructed by Donaldson (1996) (the case of hypersurfaces) and by Auroux in (1997) (for arbitrary dimensional submanifolds). |
---|---|
ISSN: | 0723-0869 1878-0792 |
DOI: | 10.1016/j.exmath.2019.04.004 |