Loading…

Critical parameters governing elastocaloric effect in polyisoprene rubbers for solid-state cooling

The aim of this work is to study the critical parameters governing the eCe (elastocaloric effect) of poly-isoprene rubber (NR and IR) in use conditions of a cooling device, i.e. under partial cyclic loading. The effect of mechanical cyclic loading parameters (pre-extension ratio, waveform and freque...

Full description

Saved in:
Bibliographic Details
Published in:Polymer (Guilford) 2024-07, Vol.307, p.127234, Article 127234
Main Authors: Haissoune, Hiba, Coativy, Gildas, Chazeau, Laurent, Lebrun, Laurent, Sebald, Gael, Chenal, Jean-Marc
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c221t-9b15db8b71ae8a9d49ed12f511907631f230a1186924450b0324cc6b985dd8463
container_end_page
container_issue
container_start_page 127234
container_title Polymer (Guilford)
container_volume 307
creator Haissoune, Hiba
Coativy, Gildas
Chazeau, Laurent
Lebrun, Laurent
Sebald, Gael
Chenal, Jean-Marc
description The aim of this work is to study the critical parameters governing the eCe (elastocaloric effect) of poly-isoprene rubber (NR and IR) in use conditions of a cooling device, i.e. under partial cyclic loading. The effect of mechanical cyclic loading parameters (pre-extension ratio, waveform and frequency) on eCe was first studied. It shows that the eCe increases when the mimimum pre-extension ratio is increased and frequency is lowered from 1Hz to 0.001Hz, as it promotes strain-induced crystallization. However, it also leads to a decrease in potential cooling power, from 7 to 0.01 MW/m3 (i.e. 8 kW/kg to 0.01 kW/kg). At intermediate frequency (f ≈ 0.1 Hz), the comparison of square and triangular waveforms demonstrated that the former enables greater temperature variation. This is due to its holding step (at maximum extension ratio), which maximizes crystallization but also promotes stress relaxation, resulting in increased mechanical losses. Consequently, the square and triangular loadings have a COPmat of 12 and 25, with a temperature variation of 4.2K and 3.6K, respectively. Regarding the formulation, rubbers that do not have a great tendency to crystallize such as synthetic polyisoprene rubber seem to have the best COPmat, while to maximize ΔT, the best of our formulations are NR crosslinked with sulfur and having a crosslink density close to 1.5 × 10−4 mol/cm3, which combine large strain induced crystallization and entropic elasticity. This material has a COPmat of about 27 and allows a ΔT≈4K, i.e.performance comparable to that of the best Shape Memory Alloys (at equivalent COPmat). [Display omitted] •Study of the elastocaloric effect of different formulations of polyisoprene rubbers.•The use of square waveform increases ΔT and the mechanical hysteresis.•The use of triangular waveform improves the COPmat.•Beyond 0.1 Hz, entropic elasticity is the main contribution to elastocaloric effect.•NR crosslinked with sulfur with ν ≈ 1.5 × 10−4 mol/cm3 shows the best eCe.
doi_str_mv 10.1016/j.polymer.2024.127234
format article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_04608853v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0032386124005706</els_id><sourcerecordid>oai_HAL_hal_04608853v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-9b15db8b71ae8a9d49ed12f511907631f230a1186924450b0324cc6b985dd8463</originalsourceid><addsrcrecordid>eNqFkEFLxDAQhYMouK7-BCFXD10zadqmJ1kWdYUFL3oOSTpds3SbktSF_femVLx6GmbevDfMR8g9sBUwKB8Pq8F35yOGFWdcrIBXPBcXZAGyyjPOa7gkC8ZynuWyhGtyE-OBMcYLLhbEbIIbndUdHXTQRxwxRLr3Jwy96_cUOx1Hn2QfnKXYtmhH6no6HXTRDwF7pOHbmMnW-kCj71yTxVGPSK1PTb-_JVet7iLe_dYl-Xx5_thss93769tmvcss5zBmtYGiMdJUoFHquhE1NsDbAqBmVZlDy3OmAWRZcyEKZtJDwtrS1LJoGinKfEke5twv3akhuKMOZ-W1U9v1Tk0zJkomZZGfIO0W864NPsaA7Z8BmJqgqoP6haomqGqGmnxPsw_TIyeX1Ggd9hYbFxIa1Xj3T8IPF4-DyQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Critical parameters governing elastocaloric effect in polyisoprene rubbers for solid-state cooling</title><source>ScienceDirect Journals</source><creator>Haissoune, Hiba ; Coativy, Gildas ; Chazeau, Laurent ; Lebrun, Laurent ; Sebald, Gael ; Chenal, Jean-Marc</creator><creatorcontrib>Haissoune, Hiba ; Coativy, Gildas ; Chazeau, Laurent ; Lebrun, Laurent ; Sebald, Gael ; Chenal, Jean-Marc</creatorcontrib><description>The aim of this work is to study the critical parameters governing the eCe (elastocaloric effect) of poly-isoprene rubber (NR and IR) in use conditions of a cooling device, i.e. under partial cyclic loading. The effect of mechanical cyclic loading parameters (pre-extension ratio, waveform and frequency) on eCe was first studied. It shows that the eCe increases when the mimimum pre-extension ratio is increased and frequency is lowered from 1Hz to 0.001Hz, as it promotes strain-induced crystallization. However, it also leads to a decrease in potential cooling power, from 7 to 0.01 MW/m3 (i.e. 8 kW/kg to 0.01 kW/kg). At intermediate frequency (f ≈ 0.1 Hz), the comparison of square and triangular waveforms demonstrated that the former enables greater temperature variation. This is due to its holding step (at maximum extension ratio), which maximizes crystallization but also promotes stress relaxation, resulting in increased mechanical losses. Consequently, the square and triangular loadings have a COPmat of 12 and 25, with a temperature variation of 4.2K and 3.6K, respectively. Regarding the formulation, rubbers that do not have a great tendency to crystallize such as synthetic polyisoprene rubber seem to have the best COPmat, while to maximize ΔT, the best of our formulations are NR crosslinked with sulfur and having a crosslink density close to 1.5 × 10−4 mol/cm3, which combine large strain induced crystallization and entropic elasticity. This material has a COPmat of about 27 and allows a ΔT≈4K, i.e.performance comparable to that of the best Shape Memory Alloys (at equivalent COPmat). [Display omitted] •Study of the elastocaloric effect of different formulations of polyisoprene rubbers.•The use of square waveform increases ΔT and the mechanical hysteresis.•The use of triangular waveform improves the COPmat.•Beyond 0.1 Hz, entropic elasticity is the main contribution to elastocaloric effect.•NR crosslinked with sulfur with ν ≈ 1.5 × 10−4 mol/cm3 shows the best eCe.</description><identifier>ISSN: 0032-3861</identifier><identifier>EISSN: 1873-2291</identifier><identifier>DOI: 10.1016/j.polymer.2024.127234</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Physics</subject><ispartof>Polymer (Guilford), 2024-07, Vol.307, p.127234, Article 127234</ispartof><rights>2024 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c221t-9b15db8b71ae8a9d49ed12f511907631f230a1186924450b0324cc6b985dd8463</cites><orcidid>0000-0003-4725-3489 ; 0000-0003-1390-8686 ; 0000-0003-4018-7562</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://insa-lyon.hal.science/hal-04608853$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Haissoune, Hiba</creatorcontrib><creatorcontrib>Coativy, Gildas</creatorcontrib><creatorcontrib>Chazeau, Laurent</creatorcontrib><creatorcontrib>Lebrun, Laurent</creatorcontrib><creatorcontrib>Sebald, Gael</creatorcontrib><creatorcontrib>Chenal, Jean-Marc</creatorcontrib><title>Critical parameters governing elastocaloric effect in polyisoprene rubbers for solid-state cooling</title><title>Polymer (Guilford)</title><description>The aim of this work is to study the critical parameters governing the eCe (elastocaloric effect) of poly-isoprene rubber (NR and IR) in use conditions of a cooling device, i.e. under partial cyclic loading. The effect of mechanical cyclic loading parameters (pre-extension ratio, waveform and frequency) on eCe was first studied. It shows that the eCe increases when the mimimum pre-extension ratio is increased and frequency is lowered from 1Hz to 0.001Hz, as it promotes strain-induced crystallization. However, it also leads to a decrease in potential cooling power, from 7 to 0.01 MW/m3 (i.e. 8 kW/kg to 0.01 kW/kg). At intermediate frequency (f ≈ 0.1 Hz), the comparison of square and triangular waveforms demonstrated that the former enables greater temperature variation. This is due to its holding step (at maximum extension ratio), which maximizes crystallization but also promotes stress relaxation, resulting in increased mechanical losses. Consequently, the square and triangular loadings have a COPmat of 12 and 25, with a temperature variation of 4.2K and 3.6K, respectively. Regarding the formulation, rubbers that do not have a great tendency to crystallize such as synthetic polyisoprene rubber seem to have the best COPmat, while to maximize ΔT, the best of our formulations are NR crosslinked with sulfur and having a crosslink density close to 1.5 × 10−4 mol/cm3, which combine large strain induced crystallization and entropic elasticity. This material has a COPmat of about 27 and allows a ΔT≈4K, i.e.performance comparable to that of the best Shape Memory Alloys (at equivalent COPmat). [Display omitted] •Study of the elastocaloric effect of different formulations of polyisoprene rubbers.•The use of square waveform increases ΔT and the mechanical hysteresis.•The use of triangular waveform improves the COPmat.•Beyond 0.1 Hz, entropic elasticity is the main contribution to elastocaloric effect.•NR crosslinked with sulfur with ν ≈ 1.5 × 10−4 mol/cm3 shows the best eCe.</description><subject>Physics</subject><issn>0032-3861</issn><issn>1873-2291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLxDAQhYMouK7-BCFXD10zadqmJ1kWdYUFL3oOSTpds3SbktSF_femVLx6GmbevDfMR8g9sBUwKB8Pq8F35yOGFWdcrIBXPBcXZAGyyjPOa7gkC8ZynuWyhGtyE-OBMcYLLhbEbIIbndUdHXTQRxwxRLr3Jwy96_cUOx1Hn2QfnKXYtmhH6no6HXTRDwF7pOHbmMnW-kCj71yTxVGPSK1PTb-_JVet7iLe_dYl-Xx5_thss93769tmvcss5zBmtYGiMdJUoFHquhE1NsDbAqBmVZlDy3OmAWRZcyEKZtJDwtrS1LJoGinKfEke5twv3akhuKMOZ-W1U9v1Tk0zJkomZZGfIO0W864NPsaA7Z8BmJqgqoP6haomqGqGmnxPsw_TIyeX1Ggd9hYbFxIa1Xj3T8IPF4-DyQ</recordid><startdate>20240724</startdate><enddate>20240724</enddate><creator>Haissoune, Hiba</creator><creator>Coativy, Gildas</creator><creator>Chazeau, Laurent</creator><creator>Lebrun, Laurent</creator><creator>Sebald, Gael</creator><creator>Chenal, Jean-Marc</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-4725-3489</orcidid><orcidid>https://orcid.org/0000-0003-1390-8686</orcidid><orcidid>https://orcid.org/0000-0003-4018-7562</orcidid></search><sort><creationdate>20240724</creationdate><title>Critical parameters governing elastocaloric effect in polyisoprene rubbers for solid-state cooling</title><author>Haissoune, Hiba ; Coativy, Gildas ; Chazeau, Laurent ; Lebrun, Laurent ; Sebald, Gael ; Chenal, Jean-Marc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-9b15db8b71ae8a9d49ed12f511907631f230a1186924450b0324cc6b985dd8463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haissoune, Hiba</creatorcontrib><creatorcontrib>Coativy, Gildas</creatorcontrib><creatorcontrib>Chazeau, Laurent</creatorcontrib><creatorcontrib>Lebrun, Laurent</creatorcontrib><creatorcontrib>Sebald, Gael</creatorcontrib><creatorcontrib>Chenal, Jean-Marc</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Polymer (Guilford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haissoune, Hiba</au><au>Coativy, Gildas</au><au>Chazeau, Laurent</au><au>Lebrun, Laurent</au><au>Sebald, Gael</au><au>Chenal, Jean-Marc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Critical parameters governing elastocaloric effect in polyisoprene rubbers for solid-state cooling</atitle><jtitle>Polymer (Guilford)</jtitle><date>2024-07-24</date><risdate>2024</risdate><volume>307</volume><spage>127234</spage><pages>127234-</pages><artnum>127234</artnum><issn>0032-3861</issn><eissn>1873-2291</eissn><abstract>The aim of this work is to study the critical parameters governing the eCe (elastocaloric effect) of poly-isoprene rubber (NR and IR) in use conditions of a cooling device, i.e. under partial cyclic loading. The effect of mechanical cyclic loading parameters (pre-extension ratio, waveform and frequency) on eCe was first studied. It shows that the eCe increases when the mimimum pre-extension ratio is increased and frequency is lowered from 1Hz to 0.001Hz, as it promotes strain-induced crystallization. However, it also leads to a decrease in potential cooling power, from 7 to 0.01 MW/m3 (i.e. 8 kW/kg to 0.01 kW/kg). At intermediate frequency (f ≈ 0.1 Hz), the comparison of square and triangular waveforms demonstrated that the former enables greater temperature variation. This is due to its holding step (at maximum extension ratio), which maximizes crystallization but also promotes stress relaxation, resulting in increased mechanical losses. Consequently, the square and triangular loadings have a COPmat of 12 and 25, with a temperature variation of 4.2K and 3.6K, respectively. Regarding the formulation, rubbers that do not have a great tendency to crystallize such as synthetic polyisoprene rubber seem to have the best COPmat, while to maximize ΔT, the best of our formulations are NR crosslinked with sulfur and having a crosslink density close to 1.5 × 10−4 mol/cm3, which combine large strain induced crystallization and entropic elasticity. This material has a COPmat of about 27 and allows a ΔT≈4K, i.e.performance comparable to that of the best Shape Memory Alloys (at equivalent COPmat). [Display omitted] •Study of the elastocaloric effect of different formulations of polyisoprene rubbers.•The use of square waveform increases ΔT and the mechanical hysteresis.•The use of triangular waveform improves the COPmat.•Beyond 0.1 Hz, entropic elasticity is the main contribution to elastocaloric effect.•NR crosslinked with sulfur with ν ≈ 1.5 × 10−4 mol/cm3 shows the best eCe.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.polymer.2024.127234</doi><orcidid>https://orcid.org/0000-0003-4725-3489</orcidid><orcidid>https://orcid.org/0000-0003-1390-8686</orcidid><orcidid>https://orcid.org/0000-0003-4018-7562</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0032-3861
ispartof Polymer (Guilford), 2024-07, Vol.307, p.127234, Article 127234
issn 0032-3861
1873-2291
language eng
recordid cdi_hal_primary_oai_HAL_hal_04608853v1
source ScienceDirect Journals
subjects Physics
title Critical parameters governing elastocaloric effect in polyisoprene rubbers for solid-state cooling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A55%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Critical%20parameters%20governing%20elastocaloric%20effect%20in%20polyisoprene%20rubbers%20for%20solid-state%20cooling&rft.jtitle=Polymer%20(Guilford)&rft.au=Haissoune,%20Hiba&rft.date=2024-07-24&rft.volume=307&rft.spage=127234&rft.pages=127234-&rft.artnum=127234&rft.issn=0032-3861&rft.eissn=1873-2291&rft_id=info:doi/10.1016/j.polymer.2024.127234&rft_dat=%3Chal_cross%3Eoai_HAL_hal_04608853v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c221t-9b15db8b71ae8a9d49ed12f511907631f230a1186924450b0324cc6b985dd8463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true