Loading…
Improving customer attrition prediction by integrating emotions from client/company interaction emails and evaluating multiple classifiers
Predicting customer churn with the purpose of retaining customers is a hot topic in academy as well as in today’s business environment. Targeting the right customers for a specific retention campaign carries a high priority. This study focuses on two aspects in which churn prediction models could be...
Saved in:
Published in: | Expert systems with applications 2009-04, Vol.36 (3), p.6127-6134 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Predicting customer churn with the purpose of retaining customers is a hot topic in academy as well as in today’s business environment. Targeting the right customers for a specific retention campaign carries a high priority. This study focuses on two aspects in which churn prediction models could be improved by (i) relying on customer information type diversity and (ii) choosing the best performing classification technique. (i) With the upcoming interest in new media (e.g. blogs, emails,
...), client/company interactions are facilitated. Consequently, new types of information are available which generate new opportunities to increase the prediction power of a churn model. This study contributes to the literature by finding evidence that adding emotions expressed in client/company emails increases the predictive performance of an extended RFM churn model. As a substantive contribution, an in-depth study of the impact of the emotionality indicators on churn behavior is done. (ii) This study compares three classification techniques – i.e. Logistic Regression, Support Vector Machines and Random Forests – to distinguish churners from non-churners. This paper shows that Random Forests is a viable opportunity to improve predictive performance compared to Support Vector Machines and Logistic Regression which both exhibit an equal performance. |
---|---|
ISSN: | 0957-4174 1873-6793 |
DOI: | 10.1016/j.eswa.2008.07.021 |