Loading…
Effective symbolic dynamics, random points, statistical behavior, complexity and entropy
We consider the dynamical behavior of Martin-Löf random points in dynamical systems over metric spaces with a computable dynamics and a computable invariant measure. We use computable partitions to define a sort of effective symbolic model for the dynamics. Through this construction, we prove that s...
Saved in:
Published in: | Information and computation 2010, Vol.208 (1), p.23-41 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider the dynamical behavior of Martin-Löf random points in dynamical systems over metric spaces with a computable dynamics and a computable invariant measure. We use computable partitions to define a sort of effective symbolic model for the dynamics. Through this construction, we prove that such points have typical statistical behavior (the behavior which is typical in the Birkhoff ergodic theorem) and are recurrent. We introduce and compare some notions of complexity for orbits in dynamical systems and prove: (i) that the complexity of the orbits of random points equals the Kolmogorov–Sinaï entropy of the system, (ii) that the supremum of the complexity of orbits equals the topological entropy. |
---|---|
ISSN: | 0890-5401 1090-2651 |
DOI: | 10.1016/j.ic.2009.05.001 |