Loading…
Nucleotide-promoted Release of hMutSα from Heteroduplex DNA Is Consistent with an ATP-dependent Translocation Mechanism
ATP hydrolysis by bacterial and eukaryotic MutS activities is required for their function in mismatch correction, and two different models for the role of ATP in MutS function have been proposed. In the translocation model, based on study of bacterial MutS, ATP binding reduces affinity of the protei...
Saved in:
Published in: | The Journal of biological chemistry 1998-11, Vol.273 (48), p.32055 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | ATP hydrolysis by bacterial and eukaryotic MutS activities is required for their function in mismatch correction, and two
different models for the role of ATP in MutS function have been proposed. In the translocation model, based on study of bacterial
MutS, ATP binding reduces affinity of the protein for a mismatch and activates secondary DNA binding sites that are subsequently
used for movement of the protein along the helix contour in a reaction dependent on nucleotide hydrolysis (Allen, D. J., Makhov,
A., Grilley, M., Taylor, J., Thresher, R., Modrich, P., and Griffith, J. D. (1997) EMBO J. 16, 4467â4476). The molecular switch model, based on study of human MutSα, invokes mismatch recognition by the MutSα·ADP
complex. After recruitment of downstream repair activities to the MutSα·mismatch complex, ATP binding results in release of
MutSα from the heteroduplex (Gradia, S., Acharya, S., and Fishel, R.(1997) Cell 91, 995â1005). To further clarify the function of ATP binding and hydrolysis in human MutSα action, we evaluated the effects
of ATP, ADP, and nonhydrolyzable ATP analogs on the lifetime of protein·DNA complexes. All of these nucleotides were found
to increase the rate of dissociation of MutSα from oligonucleotide heteroduplexes. These experiments also showed that ADP
is not required for mismatch recognition by MutSα, but that the nucleotide alters the dynamics of formation and dissociation
of specific complexes. Analysis of the mechanism of ATP-promoted dissociation of MutSα from a 200-base pair heteroduplex demonstrated
that dissociation occurs at DNA ends in a reaction dependent on ATP hydrolysis, implying that release from this molecule involves
movement of the protein along the helix contour as predicted for a translocation mechanism. In order to reconcile the relatively
large rate of movement of MutS homologs along the helix with their modest rate of ATP hydrolysis, we propose a novel mechanism
for protein translocation along DNA that supports directional movement over long distances with minimal energy input. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.273.48.32055 |