Loading…
An Approximate Method for Sampling Correlated Random Variables from Partially-Specified Distributions
This paper presents an algorithm for generating correlated vectors of random numbers. The user need not fully specify the joint distribution function; instead, the user "partially specifies" only the marginal distributions and the correlation matrix. The algorithm may be applied to any set...
Saved in:
Published in: | Management science 1998-02, Vol.44 (2), p.203-218 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents an algorithm for generating correlated vectors of random numbers. The user need not fully specify the joint distribution function; instead, the user "partially specifies" only the marginal distributions and the correlation matrix. The algorithm may be applied to any set of continuous, strictly increasing distribution functions; the marginal distributions need not all be of the same functional form. The correlation matrix is first checked for mathematical consistency (positive semi-definiteness), and adjusted if necessary. Then the correlated random vectors are generated using a combination of Cholesky decomposition and Gauss-Newton iteration. Applications are made to cost analysis, where correlations are often present between cost elements in a work breakdown structure. |
---|---|
ISSN: | 0025-1909 1526-5501 |
DOI: | 10.1287/mnsc.44.2.203 |