Loading…
Robust Mean-Covariance Solutions for Stochastic Optimization
We provide a method for deriving robust solutions to certain stochastic optimization problems, based on mean-covariance information about the distributions underlying the uncertain vector of returns. We prove that for a general class of objective functions, the robust solutions amount to solving a c...
Saved in:
Published in: | Operations research 2007-01, Vol.55 (1), p.98-112 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We provide a method for deriving robust solutions to certain stochastic optimization problems, based on mean-covariance information about the distributions underlying the uncertain vector of returns. We prove that for a general class of objective functions, the robust solutions amount to solving a certain deterministic parametric quadratic program. We first prove a general projection property for multivariate distributions with given means and covariances, which reduces our problem to optimizing a univariate mean-variance robust objective. This allows us to use known univariate results in the multidimensional setting, and to add new results in this direction. In particular, we characterize a general class of objective functions (the so-called one- or two-point support functions), for which the robust objective is reduced to a deterministic optimization problem in one variable. Finally, we adapt a result from Geoffrion (1967a) to reduce the main problem to a parametric quadratic program. In particular, our results are true for increasing concave utilities with convex or concave-convex derivatives. Closed-form solutions are obtained for special discontinuous criteria, motivated by bonus- and commission-based incentive schemes for portfolio management. We also investigate a multiproduct pricing application, which motivates extensions of our results for the case of nonnegative and decision-dependent returns. |
---|---|
ISSN: | 0030-364X 1526-5463 |
DOI: | 10.1287/opre.1060.0353 |