Loading…
Characterizing Tukey h and hh-Distributions through L-Moments and the L-Correlation
This paper introduces the Tukey family of symmetric h and asymmetric hh-distributions in the contexts of univariate L-moments and the L-correlation. Included is the development of a procedure for specifying nonnormal distributions with controlled degrees of L-skew, L-kurtosis, and L-correlations. Th...
Saved in:
Published in: | ISRN applied mathematics 2012-12, Vol.2012 (2012), p.1-20 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper introduces the Tukey family of symmetric h and asymmetric hh-distributions in the contexts of univariate L-moments and the L-correlation. Included is the development of a procedure for specifying nonnormal distributions with controlled degrees of L-skew, L-kurtosis, and L-correlations. The procedure can be applied in a variety of settings such as modeling events (e.g., risk analysis, extreme events) and Monte Carlo or simulation studies. Further, it is demonstrated that estimates of L-skew, L-kurtosis, and L-correlation are substantially superior to conventional product-moment estimates of skew, kurtosis, and Pearson correlation in terms of both relative bias and efficiency when heavy-tailed distributions are of concern. |
---|---|
ISSN: | 2090-5564 2090-5572 |
DOI: | 10.5402/2012/980153 |