Loading…
Örnek tabanlı sınıflandırıcı topluluklarıyla yeni bir klinik karar destek sistemi
Çocukluk yıllarındaki beslenme ve yaşam alışkanlıkları ileri yaşlarda ortaya çıkabilecek obezite hastalığının nedenini oluşturur. Bu çalışma çocuklarda obeziteye yakalanma riskini hesaplayan bir erken uyarı sisteminin geliştirilmesi üzerinedir. Makine öğrenmesi kolektif öğrenme algoritmaları kullanı...
Saved in:
Published in: | Gazi Üniversitesi Mühendislik Mimarlık Fakültesi dergisi 2017-01, Vol.32 (1), p.65-76 |
---|---|
Main Author: | |
Format: | Article |
Language: | Turkish |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Çocukluk yıllarındaki beslenme ve yaşam alışkanlıkları ileri yaşlarda ortaya çıkabilecek obezite hastalığının nedenini oluşturur. Bu çalışma çocuklarda obeziteye yakalanma riskini hesaplayan bir erken uyarı sisteminin geliştirilmesi üzerinedir. Makine öğrenmesi kolektif öğrenme algoritmaları kullanılarak yapay ve özgün bir klinik karar destek sistemi (KKDS) geliştirilmiştir. Obeziteye neden olan faktörler hazırlanan anket içerisine yerleştirmiştir. Devlet hastanelerinden ve okullarından alınan resmi izinlerle anketler çocuklara uygulanmış ve elde edilen verilerle güvenilir bir eğitim seti oluşturulmuştur. k En Yakın Komşuluk algoritmasının geliştirilmiş versiyonları Oylama, Bagging, Boosting ve Rastsal Altuzaylar yöntemlerinde tekil öğrenici olarak kullanılmıştır. Eğitim seti üzerinde yapılan öğrenme ve çapraz geçerleme işlemlerinde algoritmalara ait yüksek doğruluk oranları elde edilmiş ve en başarılı yöntemin 0,839’lık MCC (Matthews Correlation Coefficient) değeriyle Rastsal Altuzaylar olduğu görülmüştür. Çağın önemli bir sorununa karşı önerilen bu model sayesinde, ileri yaşlarda oluşabilecek obezite riski önceden tespit edilebilmektedir. Ayrıca ilgili kişiler tarafından gerekli önlemlerin zamanında alınabilmesi sağlanmaktadır. |
---|---|
ISSN: | 1300-1884 1304-4915 |
DOI: | 10.17341/gazimmfd.300595 |