Loading…
DeepADMR: A Deep Learning based Anomaly Detection for MANET Routing
We developed DeepADMR, a novel neural anomaly detector for the deep reinforcement learning (DRL)-based DeepCQ+ MANET routing policy. The performance of DRL-based algorithms such as DeepCQ+ is only verified within the trained and tested environments, hence their deployment in the tactical domain indu...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We developed DeepADMR, a novel neural anomaly detector for the deep reinforcement learning (DRL)-based DeepCQ+ MANET routing policy. The performance of DRL-based algorithms such as DeepCQ+ is only verified within the trained and tested environments, hence their deployment in the tactical domain induces high risks. DeepADMR monitors unexpected behavior of the DeepCQ+ policy based on the temporal difference errors (TD-errors) in real-time and detects anomaly scenarios with empirical and non-parametric cumulative-sum statistics. The DeepCQ+ design via multi-agent weight-sharing proximal policy optimization (PPO) is slightly modified to enable the real-time estimation of the TD-errors. We report the DeepADMR performance in the presence of channel disruptions, high mobility levels, and network sizes beyond the training environments, which shows its effectiveness. |
---|---|
ISSN: | 2155-7586 |
DOI: | 10.1109/MILCOM55135.2022.10017842 |