Loading…
AI Computing in Light of 2.5D Interconnect Roadmap: Big-Little Chiplets for In-memory Acceleration
The demands on bandwidth, latency and energy efficiency are ever increasing in AI computing. Chiplets, connected by 2. 5D interconnect, promise a scalable platform to meet such needs. We present a pathfinding study to bridge AI algorithms with the chiplet architecture, covering in memory computing (...
Saved in:
Main Authors: | , , , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The demands on bandwidth, latency and energy efficiency are ever increasing in AI computing. Chiplets, connected by 2. 5D interconnect, promise a scalable platform to meet such needs. We present a pathfinding study to bridge AI algorithms with the chiplet architecture, covering in memory computing (IMC), network-on-package (NoP), and heterogeneous architecture. This study is enabled by our newly developed benchmarking tool, SIAM. We perform simulations on representative algorithms (DNNs, transformers and GCNs). Particular contributions include: (1) A roadmap of 2. 5D interconnect for technological exploration; (2) A generic mapping and optimization methodology that reveals various bandwidth needs in AI computing, where the evolution of 2.5D interconnect can or cannot support; (3) A big-little chiplet architecture that matches the non-uniform nature of AI algorithms and achieves >100Ă— improvement in EDP. Overall, heterogeneous big-little chiplets with 2. 5D interconnect advance AI computing to the next level of data movement and computing efficiency. |
---|---|
ISSN: | 2156-017X |
DOI: | 10.1109/IEDM45625.2022.10019406 |