Loading…
Identification of Cellular Signal Measurements Using Machine Learning
Spectrum awareness has a plethora of civilian and defense applications, such as spectrum resource management, adaptive transmissions, interference detection, and identification of threat signals. This article proposes an identification neural network (INN)-based model that identifies cellular signal...
Saved in:
Published in: | IEEE transactions on instrumentation and measurement 2023, Vol.72, p.1-4 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c292t-5fc24c2be042584e38a63c69bbdfcc2ab0a95642ae00b31e0a7f5ace680966293 |
---|---|
cites | cdi_FETCH-LOGICAL-c292t-5fc24c2be042584e38a63c69bbdfcc2ab0a95642ae00b31e0a7f5ace680966293 |
container_end_page | 4 |
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on instrumentation and measurement |
container_volume | 72 |
creator | Makled, Esraa A. Al-Nahhal, Ibrahim Dobre, Octavia A. Ureten, Oktay |
description | Spectrum awareness has a plethora of civilian and defense applications, such as spectrum resource management, adaptive transmissions, interference detection, and identification of threat signals. This article proposes an identification neural network (INN)-based model that identifies cellular signals from three different radio access technologies, namely global system for mobile (GSM) communications, universal mobile telecommunications service, and long-term evolution. The proposed INN identifies whether or not the measured power spectral density belongs to a certain cellular signal type. Two data collection approaches (DCAs) are considered: in-band and multiple-band. The over-the-air measurements for the two DCAs show that with low computational complexity, the proposed INN model provides an identification accuracy between 93% and 100%, with a false alarm (FA) rate between 0% and 10%. |
doi_str_mv | 10.1109/TIM.2023.3238695 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10031609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10031609</ieee_id><sourcerecordid>2773448875</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-5fc24c2be042584e38a63c69bbdfcc2ab0a95642ae00b31e0a7f5ace680966293</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhi0EEqWwMzBEYk45fyYeUVWgUioG2tly3HNxlSbFTgb-Panagemk0_O-unsIeaQwoxT0y3q5mjFgfMYZL5WWV2RCpSxyrRS7JhMAWuZaSHVL7lLaA0ChRDEhi-UW2z744GwfujbrfDbHphkaG7OvsGttk63QpiHiYeRStkmh3WUr675Di1mFNrbj4p7ceNskfLjMKdm8Ldbzj7z6fF_OX6vcMc36XHrHhGM1gmCyFMhLq7hTuq633jlma7BaKsEsAtScItjCS-tQlXB6Q_MpeT73HmP3M2Dqzb4b4nhkMqwouBBlWciRgjPlYpdSRG-OMRxs_DUUzEmWGWWZkyxzkTVGns6RgIj_cOBUgeZ_y6NlYg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2773448875</pqid></control><display><type>article</type><title>Identification of Cellular Signal Measurements Using Machine Learning</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Makled, Esraa A. ; Al-Nahhal, Ibrahim ; Dobre, Octavia A. ; Ureten, Oktay</creator><creatorcontrib>Makled, Esraa A. ; Al-Nahhal, Ibrahim ; Dobre, Octavia A. ; Ureten, Oktay</creatorcontrib><description>Spectrum awareness has a plethora of civilian and defense applications, such as spectrum resource management, adaptive transmissions, interference detection, and identification of threat signals. This article proposes an identification neural network (INN)-based model that identifies cellular signals from three different radio access technologies, namely global system for mobile (GSM) communications, universal mobile telecommunications service, and long-term evolution. The proposed INN identifies whether or not the measured power spectral density belongs to a certain cellular signal type. Two data collection approaches (DCAs) are considered: in-band and multiple-band. The over-the-air measurements for the two DCAs show that with low computational complexity, the proposed INN model provides an identification accuracy between 93% and 100%, with a false alarm (FA) rate between 0% and 10%.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2023.3238695</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>3G mobile communication ; Artificial neural networks ; Cellular communication ; Communications systems ; Computational modeling ; False alarms ; Frequency measurement ; GSM ; Long Term Evolution ; Machine learning ; Military applications ; Neural networks ; Neural networks (NNs) ; Numerical models ; over-the-air data ; Power spectral density ; practical cellular measurements ; Resource management ; Wideband ; wideband signal identification</subject><ispartof>IEEE transactions on instrumentation and measurement, 2023, Vol.72, p.1-4</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-5fc24c2be042584e38a63c69bbdfcc2ab0a95642ae00b31e0a7f5ace680966293</citedby><cites>FETCH-LOGICAL-c292t-5fc24c2be042584e38a63c69bbdfcc2ab0a95642ae00b31e0a7f5ace680966293</cites><orcidid>0000-0002-5006-6169 ; 0000-0001-8528-0512 ; 0000-0002-4203-7640 ; 0000-0002-8604-392X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10031609$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Makled, Esraa A.</creatorcontrib><creatorcontrib>Al-Nahhal, Ibrahim</creatorcontrib><creatorcontrib>Dobre, Octavia A.</creatorcontrib><creatorcontrib>Ureten, Oktay</creatorcontrib><title>Identification of Cellular Signal Measurements Using Machine Learning</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>Spectrum awareness has a plethora of civilian and defense applications, such as spectrum resource management, adaptive transmissions, interference detection, and identification of threat signals. This article proposes an identification neural network (INN)-based model that identifies cellular signals from three different radio access technologies, namely global system for mobile (GSM) communications, universal mobile telecommunications service, and long-term evolution. The proposed INN identifies whether or not the measured power spectral density belongs to a certain cellular signal type. Two data collection approaches (DCAs) are considered: in-band and multiple-band. The over-the-air measurements for the two DCAs show that with low computational complexity, the proposed INN model provides an identification accuracy between 93% and 100%, with a false alarm (FA) rate between 0% and 10%.</description><subject>3G mobile communication</subject><subject>Artificial neural networks</subject><subject>Cellular communication</subject><subject>Communications systems</subject><subject>Computational modeling</subject><subject>False alarms</subject><subject>Frequency measurement</subject><subject>GSM</subject><subject>Long Term Evolution</subject><subject>Machine learning</subject><subject>Military applications</subject><subject>Neural networks</subject><subject>Neural networks (NNs)</subject><subject>Numerical models</subject><subject>over-the-air data</subject><subject>Power spectral density</subject><subject>practical cellular measurements</subject><subject>Resource management</subject><subject>Wideband</subject><subject>wideband signal identification</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkD1PwzAQhi0EEqWwMzBEYk45fyYeUVWgUioG2tly3HNxlSbFTgb-Panagemk0_O-unsIeaQwoxT0y3q5mjFgfMYZL5WWV2RCpSxyrRS7JhMAWuZaSHVL7lLaA0ChRDEhi-UW2z744GwfujbrfDbHphkaG7OvsGttk63QpiHiYeRStkmh3WUr675Di1mFNrbj4p7ceNskfLjMKdm8Ldbzj7z6fF_OX6vcMc36XHrHhGM1gmCyFMhLq7hTuq633jlma7BaKsEsAtScItjCS-tQlXB6Q_MpeT73HmP3M2Dqzb4b4nhkMqwouBBlWciRgjPlYpdSRG-OMRxs_DUUzEmWGWWZkyxzkTVGns6RgIj_cOBUgeZ_y6NlYg</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Makled, Esraa A.</creator><creator>Al-Nahhal, Ibrahim</creator><creator>Dobre, Octavia A.</creator><creator>Ureten, Oktay</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5006-6169</orcidid><orcidid>https://orcid.org/0000-0001-8528-0512</orcidid><orcidid>https://orcid.org/0000-0002-4203-7640</orcidid><orcidid>https://orcid.org/0000-0002-8604-392X</orcidid></search><sort><creationdate>2023</creationdate><title>Identification of Cellular Signal Measurements Using Machine Learning</title><author>Makled, Esraa A. ; Al-Nahhal, Ibrahim ; Dobre, Octavia A. ; Ureten, Oktay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-5fc24c2be042584e38a63c69bbdfcc2ab0a95642ae00b31e0a7f5ace680966293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3G mobile communication</topic><topic>Artificial neural networks</topic><topic>Cellular communication</topic><topic>Communications systems</topic><topic>Computational modeling</topic><topic>False alarms</topic><topic>Frequency measurement</topic><topic>GSM</topic><topic>Long Term Evolution</topic><topic>Machine learning</topic><topic>Military applications</topic><topic>Neural networks</topic><topic>Neural networks (NNs)</topic><topic>Numerical models</topic><topic>over-the-air data</topic><topic>Power spectral density</topic><topic>practical cellular measurements</topic><topic>Resource management</topic><topic>Wideband</topic><topic>wideband signal identification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Makled, Esraa A.</creatorcontrib><creatorcontrib>Al-Nahhal, Ibrahim</creatorcontrib><creatorcontrib>Dobre, Octavia A.</creatorcontrib><creatorcontrib>Ureten, Oktay</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Makled, Esraa A.</au><au>Al-Nahhal, Ibrahim</au><au>Dobre, Octavia A.</au><au>Ureten, Oktay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of Cellular Signal Measurements Using Machine Learning</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2023</date><risdate>2023</risdate><volume>72</volume><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>Spectrum awareness has a plethora of civilian and defense applications, such as spectrum resource management, adaptive transmissions, interference detection, and identification of threat signals. This article proposes an identification neural network (INN)-based model that identifies cellular signals from three different radio access technologies, namely global system for mobile (GSM) communications, universal mobile telecommunications service, and long-term evolution. The proposed INN identifies whether or not the measured power spectral density belongs to a certain cellular signal type. Two data collection approaches (DCAs) are considered: in-band and multiple-band. The over-the-air measurements for the two DCAs show that with low computational complexity, the proposed INN model provides an identification accuracy between 93% and 100%, with a false alarm (FA) rate between 0% and 10%.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2023.3238695</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-5006-6169</orcidid><orcidid>https://orcid.org/0000-0001-8528-0512</orcidid><orcidid>https://orcid.org/0000-0002-4203-7640</orcidid><orcidid>https://orcid.org/0000-0002-8604-392X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9456 |
ispartof | IEEE transactions on instrumentation and measurement, 2023, Vol.72, p.1-4 |
issn | 0018-9456 1557-9662 |
language | eng |
recordid | cdi_ieee_primary_10031609 |
source | IEEE Electronic Library (IEL) Journals |
subjects | 3G mobile communication Artificial neural networks Cellular communication Communications systems Computational modeling False alarms Frequency measurement GSM Long Term Evolution Machine learning Military applications Neural networks Neural networks (NNs) Numerical models over-the-air data Power spectral density practical cellular measurements Resource management Wideband wideband signal identification |
title | Identification of Cellular Signal Measurements Using Machine Learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A04%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20Cellular%20Signal%20Measurements%20Using%20Machine%20Learning&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Makled,%20Esraa%20A.&rft.date=2023&rft.volume=72&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2023.3238695&rft_dat=%3Cproquest_ieee_%3E2773448875%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c292t-5fc24c2be042584e38a63c69bbdfcc2ab0a95642ae00b31e0a7f5ace680966293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2773448875&rft_id=info:pmid/&rft_ieee_id=10031609&rfr_iscdi=true |