Loading…

Identification of Cellular Signal Measurements Using Machine Learning

Spectrum awareness has a plethora of civilian and defense applications, such as spectrum resource management, adaptive transmissions, interference detection, and identification of threat signals. This article proposes an identification neural network (INN)-based model that identifies cellular signal...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on instrumentation and measurement 2023, Vol.72, p.1-4
Main Authors: Makled, Esraa A., Al-Nahhal, Ibrahim, Dobre, Octavia A., Ureten, Oktay
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c292t-5fc24c2be042584e38a63c69bbdfcc2ab0a95642ae00b31e0a7f5ace680966293
cites cdi_FETCH-LOGICAL-c292t-5fc24c2be042584e38a63c69bbdfcc2ab0a95642ae00b31e0a7f5ace680966293
container_end_page 4
container_issue
container_start_page 1
container_title IEEE transactions on instrumentation and measurement
container_volume 72
creator Makled, Esraa A.
Al-Nahhal, Ibrahim
Dobre, Octavia A.
Ureten, Oktay
description Spectrum awareness has a plethora of civilian and defense applications, such as spectrum resource management, adaptive transmissions, interference detection, and identification of threat signals. This article proposes an identification neural network (INN)-based model that identifies cellular signals from three different radio access technologies, namely global system for mobile (GSM) communications, universal mobile telecommunications service, and long-term evolution. The proposed INN identifies whether or not the measured power spectral density belongs to a certain cellular signal type. Two data collection approaches (DCAs) are considered: in-band and multiple-band. The over-the-air measurements for the two DCAs show that with low computational complexity, the proposed INN model provides an identification accuracy between 93% and 100%, with a false alarm (FA) rate between 0% and 10%.
doi_str_mv 10.1109/TIM.2023.3238695
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10031609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10031609</ieee_id><sourcerecordid>2773448875</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-5fc24c2be042584e38a63c69bbdfcc2ab0a95642ae00b31e0a7f5ace680966293</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhi0EEqWwMzBEYk45fyYeUVWgUioG2tly3HNxlSbFTgb-Panagemk0_O-unsIeaQwoxT0y3q5mjFgfMYZL5WWV2RCpSxyrRS7JhMAWuZaSHVL7lLaA0ChRDEhi-UW2z744GwfujbrfDbHphkaG7OvsGttk63QpiHiYeRStkmh3WUr675Di1mFNrbj4p7ceNskfLjMKdm8Ldbzj7z6fF_OX6vcMc36XHrHhGM1gmCyFMhLq7hTuq633jlma7BaKsEsAtScItjCS-tQlXB6Q_MpeT73HmP3M2Dqzb4b4nhkMqwouBBlWciRgjPlYpdSRG-OMRxs_DUUzEmWGWWZkyxzkTVGns6RgIj_cOBUgeZ_y6NlYg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2773448875</pqid></control><display><type>article</type><title>Identification of Cellular Signal Measurements Using Machine Learning</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Makled, Esraa A. ; Al-Nahhal, Ibrahim ; Dobre, Octavia A. ; Ureten, Oktay</creator><creatorcontrib>Makled, Esraa A. ; Al-Nahhal, Ibrahim ; Dobre, Octavia A. ; Ureten, Oktay</creatorcontrib><description>Spectrum awareness has a plethora of civilian and defense applications, such as spectrum resource management, adaptive transmissions, interference detection, and identification of threat signals. This article proposes an identification neural network (INN)-based model that identifies cellular signals from three different radio access technologies, namely global system for mobile (GSM) communications, universal mobile telecommunications service, and long-term evolution. The proposed INN identifies whether or not the measured power spectral density belongs to a certain cellular signal type. Two data collection approaches (DCAs) are considered: in-band and multiple-band. The over-the-air measurements for the two DCAs show that with low computational complexity, the proposed INN model provides an identification accuracy between 93% and 100%, with a false alarm (FA) rate between 0% and 10%.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2023.3238695</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>3G mobile communication ; Artificial neural networks ; Cellular communication ; Communications systems ; Computational modeling ; False alarms ; Frequency measurement ; GSM ; Long Term Evolution ; Machine learning ; Military applications ; Neural networks ; Neural networks (NNs) ; Numerical models ; over-the-air data ; Power spectral density ; practical cellular measurements ; Resource management ; Wideband ; wideband signal identification</subject><ispartof>IEEE transactions on instrumentation and measurement, 2023, Vol.72, p.1-4</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-5fc24c2be042584e38a63c69bbdfcc2ab0a95642ae00b31e0a7f5ace680966293</citedby><cites>FETCH-LOGICAL-c292t-5fc24c2be042584e38a63c69bbdfcc2ab0a95642ae00b31e0a7f5ace680966293</cites><orcidid>0000-0002-5006-6169 ; 0000-0001-8528-0512 ; 0000-0002-4203-7640 ; 0000-0002-8604-392X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10031609$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Makled, Esraa A.</creatorcontrib><creatorcontrib>Al-Nahhal, Ibrahim</creatorcontrib><creatorcontrib>Dobre, Octavia A.</creatorcontrib><creatorcontrib>Ureten, Oktay</creatorcontrib><title>Identification of Cellular Signal Measurements Using Machine Learning</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>Spectrum awareness has a plethora of civilian and defense applications, such as spectrum resource management, adaptive transmissions, interference detection, and identification of threat signals. This article proposes an identification neural network (INN)-based model that identifies cellular signals from three different radio access technologies, namely global system for mobile (GSM) communications, universal mobile telecommunications service, and long-term evolution. The proposed INN identifies whether or not the measured power spectral density belongs to a certain cellular signal type. Two data collection approaches (DCAs) are considered: in-band and multiple-band. The over-the-air measurements for the two DCAs show that with low computational complexity, the proposed INN model provides an identification accuracy between 93% and 100%, with a false alarm (FA) rate between 0% and 10%.</description><subject>3G mobile communication</subject><subject>Artificial neural networks</subject><subject>Cellular communication</subject><subject>Communications systems</subject><subject>Computational modeling</subject><subject>False alarms</subject><subject>Frequency measurement</subject><subject>GSM</subject><subject>Long Term Evolution</subject><subject>Machine learning</subject><subject>Military applications</subject><subject>Neural networks</subject><subject>Neural networks (NNs)</subject><subject>Numerical models</subject><subject>over-the-air data</subject><subject>Power spectral density</subject><subject>practical cellular measurements</subject><subject>Resource management</subject><subject>Wideband</subject><subject>wideband signal identification</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkD1PwzAQhi0EEqWwMzBEYk45fyYeUVWgUioG2tly3HNxlSbFTgb-Panagemk0_O-unsIeaQwoxT0y3q5mjFgfMYZL5WWV2RCpSxyrRS7JhMAWuZaSHVL7lLaA0ChRDEhi-UW2z744GwfujbrfDbHphkaG7OvsGttk63QpiHiYeRStkmh3WUr675Di1mFNrbj4p7ceNskfLjMKdm8Ldbzj7z6fF_OX6vcMc36XHrHhGM1gmCyFMhLq7hTuq633jlma7BaKsEsAtScItjCS-tQlXB6Q_MpeT73HmP3M2Dqzb4b4nhkMqwouBBlWciRgjPlYpdSRG-OMRxs_DUUzEmWGWWZkyxzkTVGns6RgIj_cOBUgeZ_y6NlYg</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Makled, Esraa A.</creator><creator>Al-Nahhal, Ibrahim</creator><creator>Dobre, Octavia A.</creator><creator>Ureten, Oktay</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5006-6169</orcidid><orcidid>https://orcid.org/0000-0001-8528-0512</orcidid><orcidid>https://orcid.org/0000-0002-4203-7640</orcidid><orcidid>https://orcid.org/0000-0002-8604-392X</orcidid></search><sort><creationdate>2023</creationdate><title>Identification of Cellular Signal Measurements Using Machine Learning</title><author>Makled, Esraa A. ; Al-Nahhal, Ibrahim ; Dobre, Octavia A. ; Ureten, Oktay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-5fc24c2be042584e38a63c69bbdfcc2ab0a95642ae00b31e0a7f5ace680966293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3G mobile communication</topic><topic>Artificial neural networks</topic><topic>Cellular communication</topic><topic>Communications systems</topic><topic>Computational modeling</topic><topic>False alarms</topic><topic>Frequency measurement</topic><topic>GSM</topic><topic>Long Term Evolution</topic><topic>Machine learning</topic><topic>Military applications</topic><topic>Neural networks</topic><topic>Neural networks (NNs)</topic><topic>Numerical models</topic><topic>over-the-air data</topic><topic>Power spectral density</topic><topic>practical cellular measurements</topic><topic>Resource management</topic><topic>Wideband</topic><topic>wideband signal identification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Makled, Esraa A.</creatorcontrib><creatorcontrib>Al-Nahhal, Ibrahim</creatorcontrib><creatorcontrib>Dobre, Octavia A.</creatorcontrib><creatorcontrib>Ureten, Oktay</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Makled, Esraa A.</au><au>Al-Nahhal, Ibrahim</au><au>Dobre, Octavia A.</au><au>Ureten, Oktay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of Cellular Signal Measurements Using Machine Learning</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2023</date><risdate>2023</risdate><volume>72</volume><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>Spectrum awareness has a plethora of civilian and defense applications, such as spectrum resource management, adaptive transmissions, interference detection, and identification of threat signals. This article proposes an identification neural network (INN)-based model that identifies cellular signals from three different radio access technologies, namely global system for mobile (GSM) communications, universal mobile telecommunications service, and long-term evolution. The proposed INN identifies whether or not the measured power spectral density belongs to a certain cellular signal type. Two data collection approaches (DCAs) are considered: in-band and multiple-band. The over-the-air measurements for the two DCAs show that with low computational complexity, the proposed INN model provides an identification accuracy between 93% and 100%, with a false alarm (FA) rate between 0% and 10%.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2023.3238695</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-5006-6169</orcidid><orcidid>https://orcid.org/0000-0001-8528-0512</orcidid><orcidid>https://orcid.org/0000-0002-4203-7640</orcidid><orcidid>https://orcid.org/0000-0002-8604-392X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2023, Vol.72, p.1-4
issn 0018-9456
1557-9662
language eng
recordid cdi_ieee_primary_10031609
source IEEE Electronic Library (IEL) Journals
subjects 3G mobile communication
Artificial neural networks
Cellular communication
Communications systems
Computational modeling
False alarms
Frequency measurement
GSM
Long Term Evolution
Machine learning
Military applications
Neural networks
Neural networks (NNs)
Numerical models
over-the-air data
Power spectral density
practical cellular measurements
Resource management
Wideband
wideband signal identification
title Identification of Cellular Signal Measurements Using Machine Learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A04%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20Cellular%20Signal%20Measurements%20Using%20Machine%20Learning&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Makled,%20Esraa%20A.&rft.date=2023&rft.volume=72&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2023.3238695&rft_dat=%3Cproquest_ieee_%3E2773448875%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c292t-5fc24c2be042584e38a63c69bbdfcc2ab0a95642ae00b31e0a7f5ace680966293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2773448875&rft_id=info:pmid/&rft_ieee_id=10031609&rfr_iscdi=true