Loading…
Nonnegative Block-Term Decomposition with the β-Divergence: Joint Data Fusion and Blind Spectral Unmixing
We present a new method for solving simultaneously hyperspectral super-resolution and spectral unmixing of the unknown super-resolution image. Our method relies on three key elements: (1) the nonnegative decomposition in rank-(L r , L r , 1) block-terms, (2) joint tensor factorization with multiplic...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present a new method for solving simultaneously hyperspectral super-resolution and spectral unmixing of the unknown super-resolution image. Our method relies on three key elements: (1) the nonnegative decomposition in rank-(L r , L r , 1) block-terms, (2) joint tensor factorization with multiplicative updates, and (3) the formulation of a family of optimization problems with β-divergences objective functions. We come up with a family of simple, robust and efficient algorithms, adaptable to various noise statistics. Experiments show that our approach competes favorably with state-of-the-art methods for solving both problems at hand for various noise statistics. |
---|---|
ISSN: | 2379-190X |
DOI: | 10.1109/ICASSP49357.2023.10096100 |