Loading…
On the Network Characterization of Nano-Satellite Swarms
Low-frequency radio interferometry is crucial to understanding the universe and its very early days. Unfortunately, most of the current instruments are ground-based and thus impacted by the interferences massively produced by the Earth. To alleviate this issue, scientific missions aim at using Moon-...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Low-frequency radio interferometry is crucial to understanding the universe and its very early days. Unfortunately, most of the current instruments are ground-based and thus impacted by the interferences massively produced by the Earth. To alleviate this issue, scientific missions aim at using Moon-orbiting nano-satellite swarms as distributed radio-telescopes in outer space, keeping them out of Earth interference range. However, swarms of nano-satellites are systems with complex dynamics and need to be appropriately characterized to achieve their scientific mission. This paper presents a methodology based on graph theory for characterizing the swarm network system by computing graph theory metrics around three properties: the node density, network connectivity and ISL availability. We show that these properties are well-suited for highlighting a possible heterogeneity in a network and adapt a routing strategy accordingly. This work is the first milestone in defining the best-suited routing strategy within the swarm from the derived network properties. |
---|---|
ISSN: | 2642-7389 |
DOI: | 10.1109/ISCC58397.2023.10218020 |