Loading…

Multiperson Activity Recognition and Tracking Based on Skeletal Keypoint Detection

Currently, most action recognition networks have deep overall structures, large model parameters, and high requirements for computer hardware equipment. As a result, it is easy to overfit in the recognition process for too deep network layers. Furthermore, it is also difficult to extract features be...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on artificial intelligence 2024-05, Vol.5 (5), p.2279-2292
Main Authors: Li, Hai-Sheng, Chen, Jing-Yin, Xia, Hai-ying
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Currently, most action recognition networks have deep overall structures, large model parameters, and high requirements for computer hardware equipment. As a result, it is easy to overfit in the recognition process for too deep network layers. Furthermore, it is also difficult to extract features because of the video's interference information, such as illumination and occlusion. To solve the above problems, we propose a multiperson action recognition and tracking algorithm based on skeletal keypoint detection. First, the n network combining the improved dense convolutional network and part affinity field is used to extract the skeletal information points of the human body. Then, we present an improved DeepSort network for multiperson target tracking, which contains a Hungarian matching algorithm based on the generalized intersection over union and a pedestrian reidentification network combining GhostNet and feature pyramid network. Finally, we construct a deep neural network model to classify the extracted human skeletal information and realize action recognition. Experimental results show that the multiperson action recognition and tracking algorithm achieves an action recognition accuracy of 98%. In addition, the multitarget tracking accuracy of the proposed algorithm is improved by 4.2% on the MOT16 dataset. Compared with other common algorithms, the proposed algorithm can achieve high accuracy in detecting keypoints of the human body and improve the accuracy of multiperson action recognition with fewer parameters and complexity of operations.
ISSN:2691-4581
2691-4581
DOI:10.1109/TAI.2023.3318575