Loading…

Online Joint Topology Identification and Signal Estimation From Streams With Missing Data

Identifying the topology underlying a set of time series is useful for tasks such as prediction, denoising, and data completion. Vector autoregressive (VAR) model-based topologies capture dependencies among time series and are often inferred from observed spatio-temporal data. When data are affected...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal and information processing over networks 2023, Vol.9, p.691-704
Main Authors: Zaman, Bakht, Lopez-Ramos, Luis Miguel, Beferull-Lozano, Baltasar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Identifying the topology underlying a set of time series is useful for tasks such as prediction, denoising, and data completion. Vector autoregressive (VAR) model-based topologies capture dependencies among time series and are often inferred from observed spatio-temporal data. When data are affected by noise and/or missing samples, topology identification and signal recovery (reconstruction) tasks must be performed jointly. Additional challenges arise when i) the underlying topology is time-varying, ii) data become available sequentially, and iii) no delay is tolerated. This study proposes an online algorithm to overcome these challenges in estimating VAR model-based topologies, having constant complexity per iteration, which makes it interesting for big-data scenarios. The inexact proximal online gradient descent framework is used to derive a performance guarantee for the proposed algorithm, in the form of a dynamic regret bound. Numerical tests are also presented, showing the ability of the proposed algorithm to track time-varying topologies with missing data in an online fashion.
ISSN:2373-776X
2373-7778
DOI:10.1109/TSIPN.2023.3324569