Loading…
Machine Learning-Based Batch Processing for Calibration of Model and Noise Parameters
Non-Gaussian or non-whiteness of noise sources often occurs in many digital avionics systems. Incorrect modeling of the system degrades the performance of parametric model-based estimators and controllers. To calibrate the model and noise parameters, this paper proposes a machine learning-based batc...
Saved in:
Main Author: | |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Non-Gaussian or non-whiteness of noise sources often occurs in many digital avionics systems. Incorrect modeling of the system degrades the performance of parametric model-based estimators and controllers. To calibrate the model and noise parameters, this paper proposes a machine learning-based batch processing approach. We first mathematically formulate a state augmentation system containing three types of noise: color noise, state-dependent noise, and correlation noise. Next, we define accessible process and measurement residuals to create the training data set. Finally, we propose offline batch processing that recursively utilizes a machine learning technique to calibrate the model and noise parameters. Simulation results under various conditions validate the calibration performance of the proposed approach. |
---|---|
ISSN: | 2155-7209 |
DOI: | 10.1109/DASC58513.2023.10311101 |