Loading…
Clustering Analysis of a Spatiotemporal Dataset with a Novel Kernel Density Estimator
A vast number of spatiotemporal datasets collected from a wide range of sources has motivated scientists to develop effective approaches to identify interesting patterns hidden in these datasets. In this respect, kernel density estimators, which belong to a class of non-parametric estimators in stat...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A vast number of spatiotemporal datasets collected from a wide range of sources has motivated scientists to develop effective approaches to identify interesting patterns hidden in these datasets. In this respect, kernel density estimators, which belong to a class of non-parametric estimators in statistics, have been widely exploited in recent years. With this background, we have developed a novel kernel density estimator aiming to provide accurate analysis results. According to the evaluation with a real spatiotemporal dataset, which collected emergency medical service records in a county in the United States, the proposed kernel density estimator can approximate the probability density function significantly more accurately than a conventional kernel density estimator. Furthermore, we have exploited the proposed kernel density estimator to identify interesting patterns hidden in the real spatiotemporal dataset. |
---|---|
ISSN: | 2160-1348 |
DOI: | 10.1109/ICMLC58545.2023.10327996 |