Loading…

ATHENA: Machine Learning and Reasoning for Radio Resources Scheduling in vRAN systems

Next-generation mobile networks will rely on their autonomous operation. Virtual Network Functions empowered by Artificial Intelligence (AI) and Machine Learning (ML) can adapt to varying environments that encompass both network conditions and the cloud platform executing them. In this view, it beco...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal on selected areas in communications 2024-02, Vol.42 (2), p.1-1
Main Authors: Apostolakis, Nikolaos, Gramaglia, Marco, Chatzieleftheriou, Livia Elena, Subramanya, Tejas, Banchs, Albert, Sanneck, Henning
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Next-generation mobile networks will rely on their autonomous operation. Virtual Network Functions empowered by Artificial Intelligence (AI) and Machine Learning (ML) can adapt to varying environments that encompass both network conditions and the cloud platform executing them. In this view, it becomes paramount to understand why AI/ML algorithms made a decision, to be able to reason upon those decisions and, eventually, take further decisions related to e.g ., network orchestration. In this paper, we present ATHENA, an ML-based radio resource scheduler for virtualized Radio Access Network (RAN) system. Our real-software implementation shows that the proposed ML-based approach can outperform the baseline solution. We discuss how additional re-orchestration actions can be taken by analyzing our scheduling decisions and learning from the past.
ISSN:0733-8716
1558-0008
DOI:10.1109/JSAC.2023.3336155