Loading…
The StarLight formation-flying interferometer system architecture
The StarLight project, formerly known as ST3 and scheduled for a 6 month mission in 2006, will demonstrate the new technologies of spaceborne long-baseline optical interferometry and precision formation flying necessary for the Terrestrial Planet Finder and other future astrophysics missions. A prim...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The StarLight project, formerly known as ST3 and scheduled for a 6 month mission in 2006, will demonstrate the new technologies of spaceborne long-baseline optical interferometry and precision formation flying necessary for the Terrestrial Planet Finder and other future astrophysics missions. A primary goal is to fully characterize the interferometer capabilities by obtaining 100-500 fringe visibility amplitude measurements for stars in the band 600-1000 nm with a variety of stellar visibilities (0.2-1.0), stellar magnitudes (Mv = 2-5), and baselines (B = 30-125 meters). Interferometry on StarLight will be performed both in a 1 meter fixed-baseline combiner-only mode and in a formation-flying mode, in which two spacecraft operate in a novel Parabolic Geometry Interferometer configuration. The Interferometer System will consist of the following subsystems, each of which will have components on both the combiner and collector spacecraft: stellar, metrology, optical bench, electronics, and flight software. This paper provides an overview of the Interferometer System driving requirements, its overall architecture, and subsystems. |
---|---|
DOI: | 10.1109/AERO.2002.1036885 |