Loading…

Uncertainty Quantification for Recursive Estimation in Adaptive Safety-Critical Control

In this paper, we present a framework for online parameter estimation and uncertainty quantification in the context of adaptive safety-critical control. The key insight enabling our approach is that the parameter estimate generated by the continuous-time recursive least squares (RLS) algorithm at an...

Full description

Saved in:
Bibliographic Details
Main Authors: Cohen, Max H., Mann, Makai, Leahy, Kevin, Belta, Calin
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we present a framework for online parameter estimation and uncertainty quantification in the context of adaptive safety-critical control. The key insight enabling our approach is that the parameter estimate generated by the continuous-time recursive least squares (RLS) algorithm at any point in time is an affine transformation of the initial parameter estimate. This property allows for parameterizing such estimates using objects that are closed under affine transformation, such as zonotopes, and enables the efficient propagation of such set-based estimates as time progresses. We illustrate how such an approach facilitates the synthesis of safety-critical controllers for systems with parametric uncertainty and additive disturbances using control barrier functions, and demonstrate the utility of our approach through illustrative examples.
ISSN:2378-5861
DOI:10.23919/ACC60939.2024.10644927