Loading…
Spectral LPM: an optimal locality-preserving mapping using the spectral (not fractal) order
For the past two decades, fractals (e.g., the Hilbert and Peano space-filling curves) have been considered the natural method for providing a locality-preserving mapping. The idea behind a locality-preserving mapping is to map points that are nearby in the multidimensional space into points that are...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | For the past two decades, fractals (e.g., the Hilbert and Peano space-filling curves) have been considered the natural method for providing a locality-preserving mapping. The idea behind a locality-preserving mapping is to map points that are nearby in the multidimensional space into points that are nearby in the one-dimensional space. We argue against the use of fractals in locality-preserving mapping algorithms, and present examples with experimental evidence to show why fractals produce poor locality-preserving mappings. In addition, we propose an optimal locality-preserving mapping algorithm, termed the spectral locality-preserving mapping algorithm (Spectral LPM, for short), that makes use of the spectrum of the multidimensional space. We give a mathematical proof for the optimality of Spectral LPM, and also demonstrate its practical use. |
---|---|
DOI: | 10.1109/ICDE.2003.1260840 |