Loading…
Analysis of the knot-tying force in dog models
From our experience of endoscopic surgery using the surgical robot da Vinci at our hospital, it has become clear that the lack of a sense of touch of the forceps makes meticulous operations difficult. For the development of a surgical robot that would impart a sense of touch, we investigated the app...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | From our experience of endoscopic surgery using the surgical robot da Vinci at our hospital, it has become clear that the lack of a sense of touch of the forceps makes meticulous operations difficult. For the development of a surgical robot that would impart a sense of touch, we investigated the appropriate knot-tying force by determining the relation between this force and wound healing in dog models. We cut and then sutured the jejenum of Beagle dogs, using a series of knot-tying forces (0.5-5.0 N). The jejenum was then removed on the 4/sup th/, 7/sup th/, 11/sup th/ and 14/sup th/ postoperative days, and the microvessel density for each force was measured to determine the appropriate knot-tying force for the jejenum. The microvessel density in the submucosa on the 7/sup th/ and 11/sup th/ postoperative days was significantly higher for the knot-tying force of 1.5 N than for other forces used. Thus, the results of our study suggested that a knot-tying force of 1.5 N was the most appropriate force for suturing of wounds of the jejenum. We consider that this result would be useful for the development of a surgical robot that imparts a sense of touch to the surgeon's hand. |
---|---|
DOI: | 10.1109/AMC.2004.1297670 |