Loading…
A simulation methodology in modeling cell divisions with stochastic effects
We present a model to explain the effects of the long time between blood stem cell divisions and rapid cascades of progenitor cell divisions on the mitochondrial DNA drift. We allow four stochastic events in the system namely, mtDNA replication and degradation, cell division and death. To implement...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present a model to explain the effects of the long time between blood stem cell divisions and rapid cascades of progenitor cell divisions on the mitochondrial DNA drift. We allow four stochastic events in the system namely, mtDNA replication and degradation, cell division and death. To implement the conceptual model, we design two simulation models; one for a limited number of stem cells (20,000) over very long time scale (100 years) and another for the cell divisions of a progenitor cell resulting in a large number of blood cells (/spl sim/10 million) over a shorter time span (25 days). Iterative enhancement with incremental builds constitutes the modeling methodology. We adopt the activity scanning conceptual framework for the model implementation. Initial transient and memory issues are resolved. By output data analysis, we conclude that the variation in mutation level occurs significantly due to time and less so due to cell divisions. |
---|---|
DOI: | 10.1109/WSC.2004.1371566 |