Loading…

Quaternion wavelets for image analysis and processing

Using the concepts of two-dimensional Hubert transform and analytic signal, we construct a new quaternion wavelet transform (QWT). The QWT forms a tight frame and can be efficiently computed using a-2-D dual-tree filter bank. The QWT and the 2-D complex wavelet transform (CWT) are related by a unita...

Full description

Saved in:
Bibliographic Details
Main Authors: Wai Lam Chan, Hyeokho Choi, Baraniuk, R.
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Using the concepts of two-dimensional Hubert transform and analytic signal, we construct a new quaternion wavelet transform (QWT). The QWT forms a tight frame and can be efficiently computed using a-2-D dual-tree filter bank. The QWT and the 2-D complex wavelet transform (CWT) are related by a unitary transformation, but the former inherits the quaternion Fourier-transform (QFT) phase properties, which are desirable for image analysis. The quaternion magnitude-phase representation of the QWT directly leads to near shift-invariance and the ability to encode phase shifts in an absolute x-y-coordinate system, which we can use for applications such as edge estimation and statistical image modeling.
ISSN:1522-4880
2381-8549
DOI:10.1109/ICIP.2004.1421758