Loading…
Noise Robust Aurora-2 Speech Recognition Employing a Codebook-Constrained Kalman Filter Preprocessor
In this paper, a speech signal estimation framework involving Kalman filters for use as a front-end to the Aurora-2 speech recognition task is presented. Kalman-filter based speech estimation algorithms assume autoregressive (AR) models for the speech and the noise signals. In this paper, the parame...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, a speech signal estimation framework involving Kalman filters for use as a front-end to the Aurora-2 speech recognition task is presented. Kalman-filter based speech estimation algorithms assume autoregressive (AR) models for the speech and the noise signals. In this paper, the parameters of the AR models are estimated using a expectation-maximization approach. The key to the success of the proposed algorithm is the constraint on the AR model parameters corresponding to the speech signal to belong to a codebook trained on AR parameters obtained from clean speech signals. Aurora-2 noise-robust speech recognition experiments are performed to demonstrate the success of the codebook-constrained Kalman filter in improving speech recognition accuracy in noisy environments. Results with both clean and multi-conditional training are provided to show the improvements in the recognition accuracy compared to the base-line system where no pre-processing is employed |
---|---|
ISSN: | 1520-6149 2379-190X |
DOI: | 10.1109/ICASSP.2006.1660137 |