Loading…
Channel Stress Modulation and Pattern Loading Effect Minimization of Milli-Second Super Anneal for Sub-65nm High Performance SiGe CMOS
In this paper, we present an advanced integration approach using milli-second anneal technique to enhance device performance. In addition to enhanced poly-silicon activation, the device gain resulted from channel stress modulation, and retarded dopant diffusion can be obtained through process optimi...
Saved in:
Main Authors: | , , , , , , , , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we present an advanced integration approach using milli-second anneal technique to enhance device performance. In addition to enhanced poly-silicon activation, the device gain resulted from channel stress modulation, and retarded dopant diffusion can be obtained through process optimization including rapid-thermal anneal (RTA), capping layer, and milli-second anneal. More than 15% NMOS performance gain is demonstrated without undergoing milli-second-anneal-induced pattern loading effect and re-crystallization defect. No obvious stress relaxation and driving current degradation are observed in epi-SiGe PMOS. Moreover, the performance gain is increased while lowering the RTA temperature, suggesting that our proposed approach may open an alternative pathway for 45nm technology node and beyond |
---|---|
ISSN: | 0743-1562 |
DOI: | 10.1109/VLSIT.2006.1705273 |