Loading…
Effect of normalization on microarray-based classification
When using cDNA microarrays, normalization to correct biases is a common preliminary step before carrying out any data analysis, its objective being to reduce the systematic variations between the arrays. The biases are due to various systematic factors - scanner setting, amount of mRNA in the sampl...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | When using cDNA microarrays, normalization to correct biases is a common preliminary step before carrying out any data analysis, its objective being to reduce the systematic variations between the arrays. The biases are due to various systematic factors - scanner setting, amount of mRNA in the sample pool, and dye response characteristics between the channels. Since expression-based phenotype classification is a major use of microarrays, it is important to evaluate microarray normalization procedures relative to classification. Using a model-based approach, we model the systemic-error process to generate synthetic gene-expression values with known ground truth. Three normalization methods and three classification rules are then considered. Our simulation shows that normalization can have a significant benefit for classification under difficult experimental conditions. |
---|---|
ISSN: | 2150-3001 |
DOI: | 10.1109/GENSIPS.2006.353129 |